# How could I approach \lim_{n \to \infty} (\frac{1+\co

How could I approach
$$\displaystyle\lim_{{{n}\to\infty}}{\left({\frac{{{1}+{\cos{{\left({\frac{{{1}}}{{{2}^{{n}}}}}\right)}}}}}{{{2}}}}\right)}^{{n}}$$
I tried several things to evaluate it, namely looking at it as $$\displaystyle{{\cos{{\left({\frac{{{1}}}{{{2}^{{{n}+{1}}}}}}\right)}}}^{{{2}{n}}}}$$ instead or as $$\displaystyle{\exp{{\left({2}{n}\cdot{\ln{{\left({\cos{{\left({\frac{{{1}}}{{{2}^{{{n}+{1}}}}}}\right)}}}\right)}}}\right.}}}$$ and then trying to show that the limit of $$\displaystyle{n}\cdot{\ln{{\left({\cos{{\left({\frac{{{1}}}{{{2}^{{{n}+{1}}}}}}\right)}}}\right)}}}$$ is 0 (for example using L'Hopital's rule), but I haven't been very successful

## Want to know more about Trigonometry?

• Questions are typically answered in as fast as 30 minutes

### Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Jim Hunt
$$\displaystyle{\left({\frac{{{1}+{\cos{{\left({\frac{{{1}}}{{{2}^{{n}}}}}\right)}}}}}{{{2}}}}\right)}^{{n}}\leq{\left({\frac{{{1}+{1}}}{{{2}}}}\right)}^{{n}}={1}$$
Now $$\displaystyle{\cos{{u}}}\geq{1}-{\frac{{{u}^{{2}}}}{{{2}}}}$$ for small $$\displaystyle{u}\geq{0}$$, then
$$\displaystyle{\left({\frac{{{1}+{\cos{{\left({\frac{{{1}}}{{{2}^{{n}}}}}\right)}}}}}{{{2}}}}\right)}^{{n}}\geq{\left({1}-{\frac{{{1}}}{{{2}^{{{2}{\left({n}+{1}\right)}}}}}}\right)}^{{n}}\to{1}$$
###### Not exactly what you’re looking for?
movingsupplyw1
Continuing where you left off with L'Hopital's:
$$\displaystyle{L}=\lim_{{{n}\to\infty}}{n}{\ln{{\left({\cos{{\left({\frac{{{1}}}{{{2}^{{{n}+{1}}}}}}\right)}}}\right)}}}=\lim_{{{n}\to\infty}}{\frac{{{\ln{{\left({\cos{{\left({2}^{{-{n}-{1}}}\right)}}}\right)}}}}}{{{\frac{{{1}}}{{{n}}}}}}}=\lim_{{{n}\to\infty}}{\frac{{-{\tan{{\left({2}^{{-{n}-{1}}}\right)}}}\cdot{2}^{{-{n}-{1}}}{\ln{{2}}}}}{{-{\frac{{{1}}}{{{n}^{{2}}}}}}}}$$
Supposing the limits are finite, we can break up the limit over multiplication like this:
$$\displaystyle{\ln{{2}}}\lim_{{{n}\to\infty}}{\tan{{\left({2}^{{-{n}-{1}}}\right)}}}\lim_{{{n}\to\infty}}{\frac{{{n}^{{2}}}}{{{2}^{{{n}+{1}}}}}}$$
The first limit is 0 by the continuity of $$\displaystyle{\tan{}}$$, and the second is easily shown to be 0 by repeatedly applying L'Hopital's.
So, our original limit is $$\displaystyle{e}^{{{2}{L}}}={e}^{{0}}={1}$$
Vasquez

You were very close to the right track. Write
$$y=(\frac{1+\cos(\epsilon^n)}{2})^n \Rightarrow \log(y)=n \log(\frac{1+\cos(\epsilon^n)}{2})$$
Now, using the series expansion of cos(t) for small angles (or equivalents
$$\cos(\epsilon^n)=1-\frac12 \epsilon^{2n}+\ldots$$
$$\frac{1+\cos(\epsilon^n)}{2}=1-\frac14 \epsilon^{2n}+\ldots$$
$$\log(\frac{1+\cos(\epsilon^n)}{2})=-\frac14 \epsilon^{2n}+\ldots$$
But $$\epsilon=\frac12$$ ; so
$$\log(y) \to 0 \Rightarrow y \to 1$$