first derivative of the given function

\(y= cot 5x\)

Your answer

asked 2022-01-10

first derivative of the given function

\(y= cot 5x\)

asked 2021-08-08

a. Locate the critical points of ƒ.

b. Use the First Derivative Test to locate the local maximum and minimum values.

c. Identify the absolute maximum and minimum values of the function on the given interval (when they exist).

\(\displaystyle{f{{\left({x}\right)}}}={\frac{{{x}^{{{2}}}}}{{{x}^{{{2}}}-{1}}}}\) on \(\displaystyle{\left[-{4},{4}\right]}\)

b. Use the First Derivative Test to locate the local maximum and minimum values.

c. Identify the absolute maximum and minimum values of the function on the given interval (when they exist).

\(\displaystyle{f{{\left({x}\right)}}}={\frac{{{x}^{{{2}}}}}{{{x}^{{{2}}}-{1}}}}\) on \(\displaystyle{\left[-{4},{4}\right]}\)

asked 2022-01-02

How to find first derivative of function \(\displaystyle{y}={x}{\ln{{\left({x}\right)}}}\) by limit definition, that is using this formula

\(\displaystyle{y}'=\lim_{{{h}\to{0}}}{\frac{{{f{{\left({x}+{h}\right)}}}-{f{{\left({x}\right)}}}}}{{{h}}}}\)

\(\displaystyle{y}'=\lim_{{{h}\to{0}}}{\frac{{{f{{\left({x}+{h}\right)}}}-{f{{\left({x}\right)}}}}}{{{h}}}}\)

asked 2021-12-09

Find the first derivative of \(\displaystyle{e}^{{{x}^{{{2}}}}}\)

asked 2021-12-06

Find the derivative of the following functions by first expanding the expression.

\(\displaystyle{h}{\left({x}\right)}=\sqrt{{{x}}}{\left(\sqrt{{{x}}}-{1}\right)}\)

\(\displaystyle{h}{\left({x}\right)}=\sqrt{{{x}}}{\left(\sqrt{{{x}}}-{1}\right)}\)

asked 2021-12-07

Find the derivative of the following functions by first expanding the expression.

\(\displaystyle{h}{\left({x}\right)}={\left({x}^{{{2}}}+{1}\right)}^{{{2}}}\)

\(\displaystyle{h}{\left({x}\right)}={\left({x}^{{{2}}}+{1}\right)}^{{{2}}}\)

asked 2021-12-07

Find the derivative of the following functions by first expanding the expression.

\(\displaystyle{g{{\left({r}\right)}}}={\left({5}{r}^{{{3}}}+{3}{r}+{1}\right)}{\left({r}^{{{2}}}+{3}\right)}\)

\(\displaystyle{g{{\left({r}\right)}}}={\left({5}{r}^{{{3}}}+{3}{r}+{1}\right)}{\left({r}^{{{2}}}+{3}\right)}\)