Question

Consider the following research questions/study scenarios. For each study, discuss the most appropriate methods for describing the data (graphically a

Describing quantitative data
ANSWERED
asked 2021-01-22
Consider the following research questions/study scenarios. For each study, discuss the most appropriate methods for describing the data (graphically and numerically). What statistical method would be most appropriate for addressing the research questions? Be sure to provide justification of the statistical method. Provide the appropriate regression model and statistical test when appropriate.
1.A study was performed to determine the differences in pain experienced by children with sickle cell disease (SCD) in inpatient and outpatient settings. Pain intensity (visual analog scale) was the primary outcome of interest, but potential confounders include age and physical activity.

Answers (1)

2021-01-23
Step 1
Given,
A study was performed to determine the differences in pain experienced by children with sickle cell disease (SCD) in inpatient and outpatient settings. Pain intensity (visual analog scale) was the primary outcome of interest, but potential confounders include age and physical activity.
Step 2
A two sample t-test will be more appropriate.
Here the independent variable is the patient group (in patient or out patient) and hence these two samples are independent.
Since the pain intensity is measured as VAS and hence, it is a quantitative (continuous data) and we assume that the population is Normal with same variance.
Since age and physical activities are potential confounders, we need to take care of these factors and possibly, set the inclusion and exclusion criteria restricting the groups so that the resulting data is free from the confounders.
For describing the data graphically, bar chart is appropriate.
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-05-14
When σ is unknown and the sample size is \(\displaystyle{n}\geq{30}\), there are tow methods for computing confidence intervals for μμ. Method 1: Use the Student's t distribution with d.f. = n - 1. This is the method used in the text. It is widely employed in statistical studies. Also, most statistical software packages use this method. Method 2: When \(\displaystyle{n}\geq{30}\), use the sample standard deviation s as an estimate for σσ, and then use the standard normal distribution. This method is based on the fact that for large samples, s is a fairly good approximation for σσ. Also, for large n, the critical values for the Student's t distribution approach those of the standard normal distribution. Consider a random sample of size n = 31, with sample mean x¯=45.2 and sample standard deviation s = 5.3. (c) Compare intervals for the two methods. Would you say that confidence intervals using a Student's t distribution are more conservative in the sense that they tend to be longer than intervals based on the standard normal distribution?
asked 2020-12-24
True or False
1.The goal of descriptive statistics is to simplify, summarize, and organize data.
2.A summary value, usually numerical, that describes a sample is called a parameter.
3.A researcher records the average age for a group of 25 preschool children selected to participate in a research study. The average age is an example of a statistic.
4.The median is the most commonly used measure of central tendency.
5.The mode is the best way to measure central tendency for data from a nominal scale of measurement.
6.A distribution of scores and a mean of 55 and a standard deviation of 4. The variance for this distribution is 16.
7.In a distribution with a mean of M = 36 and a standard deviation of SD = 8, a score of 40 would be considered an extreme value.
8.In a distribution with a mean of M = 76 and a standard deviation of SD = 7, a score of 91 would be considered an extreme value.
9.A negative correlation means that as the X values decrease, the Y values also tend to decrease.
10.The goal of a hypothesis test is to demonstrate that the patterns observed in the sample data represent real patterns in the population and are not simply due to chance or sampling error.
asked 2021-06-19
When two targets are presented close together in a rapid visual stream, the second target is often missed. Psychologists call this phenomenon the attentional blink (AB). A study published in Advances in Cognitive Psychology (July 2013) investigated whether simultaneous or preceding sounds could reduce AB. Twenty subjects were presented a rapid visual stream of symbols and letters on a computer screen and asked to identify the first and second letters (the targets). After several trials, the subject's AB magnitude was measured as the difference between the percentages of first target and second target letters correctly identified. Each subject performed the task under each of three conditions. In the Simultaneous condition, a sound (tone) was presented simultaneously with the second target; in the Alert condition, a sound was presented prior to the coming of the second target; and in the No-Tone condition, no sound was presented with the second target. Scatterplots of AB magnitude for each possible pair of conditions are shown below as well as the least squares line for each. a. Which pair of conditions produces the least squares line with the steepest estimated slope? b. Which pair of conditions produces the least squares line with the largest SSE? c. Which pair of conditions produces the least squares line with the smallest estímate of σ?
asked 2020-12-25
Case: Dr. Jung’s Diamonds Selection
With Christmas coming, Dr. Jung became interested in buying diamonds for his wife. After perusing the Web, he learned about the “4Cs” of diamonds: cut, color, clarity, and carat. He knew his wife wanted round-cut earrings mounted in white gold settings, so he immediately narrowed his focus to evaluating color, clarity, and carat for that style earring.
After a bit of searching, Dr. Jung located a number of earring sets that he would consider purchasing. But he knew the pricing of diamonds varied considerably. To assist in his decision making, Dr. Jung decided to use regression analysis to develop a model to predict the retail price of different sets of round-cut earrings based on their color, clarity, and carat scores. He assembled the data in the file Diamonds.xls for this purpose. Use this data to answer the following questions for Dr. Jung.
1) Prepare scatter plots showing the relationship between the earring prices (Y) and each of the potential independent variables. What sort of relationship does each plot suggest?
2) Let X1, X2, and X3 represent diamond color, clarity, and carats, respectively. If Dr. Jung wanted to build a linear regression model to estimate earring prices using these variables, which variables would you recommend that he use? Why?
3) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
4) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
5) Dr. Jung now remembers that it sometimes helps to perform a square root transformation on the dependent variable in a regression problem. Modify your spreadsheet to include a new dependent variable that is the square root on the earring prices (use Excel’s SQRT( ) function). If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
1
6) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
7) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must actually square the model’s estimates to convert them to price estimates.) Which sets of earring appears to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
8) Dr. Jung now also remembers that it sometimes helps to include interaction terms in a regression model—where you create a new independent variable as the product of two of the original variables. Modify your spreadsheet to include three new independent variables, X4, X5, and X6, representing interaction terms where: X4 = X1 × X2, X5 = X1 × X3, and X6 = X2 × X3. There are now six potential independent variables. If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
9) Suppose Dr. Jung decides to use color (X1), carats (X3) and the interaction terms X4 (color * clarity) and X5 (color * carats) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
10) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must square the model’s estimates to convert them to actual price estimates.) Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
...