Explanation:

\(\displaystyle{\arccos{{x}}}={\frac{{{1}}}{{{2}}}}\)

Trig table of special arcs gives

\(\displaystyle{\cos{{x}}}={\frac{{{1}}}{{{2}}}}\to{x}={\frac{{\pi}}{{{3}}}}\)

Trig unit circle gives another arc x that has the same \(\displaystyle{\cos{}}\) value

\(\displaystyle{\cos{{x}}}={\frac{{12}}{\to}}{x}=-{\frac{\pi}{{3}}}\), or \(\displaystyle{x}={\frac{{{5}\pi}}{{{3}}}}\) (co-terminal)

Answers: \(\displaystyle{\frac{{\pi}}{{{3}}}}\) and \(\displaystyle{\frac{{{5}\pi}}{{{3}}}}\)

\(\displaystyle{\arccos{{x}}}={\frac{{{1}}}{{{2}}}}\)

Trig table of special arcs gives

\(\displaystyle{\cos{{x}}}={\frac{{{1}}}{{{2}}}}\to{x}={\frac{{\pi}}{{{3}}}}\)

Trig unit circle gives another arc x that has the same \(\displaystyle{\cos{}}\) value

\(\displaystyle{\cos{{x}}}={\frac{{12}}{\to}}{x}=-{\frac{\pi}{{3}}}\), or \(\displaystyle{x}={\frac{{{5}\pi}}{{{3}}}}\) (co-terminal)

Answers: \(\displaystyle{\frac{{\pi}}{{{3}}}}\) and \(\displaystyle{\frac{{{5}\pi}}{{{3}}}}\)