True or False 1.The goal of descriptive statistics is to simplify, summarize, and organize data. 2.A summary value, usually numerical, that describes a sample is called a parameter. 3.A researcher records the average age for a group of 25 preschool children selected to participate in a research study. The average age is an example of a statistic. 4.The median is the most commonly used measure of central tendency. 5.The mode is the best way to measure central tendency for data from a nominal scale of measurement. 6.A distribution of scores and a mean of 55 and a standard deviation of 4. The variance for this distribution is 16. 7.In a distribution with a mean of M = 36 and a standard deviation of SD = 8, a score of 40 would be considered an extreme value. 8.In a distribution with a

True or False 1.The goal of descriptive statistics is to simplify, summarize, and organize data. 2.A summary value, usually numerical, that describes a sample is called a parameter. 3.A researcher records the average age for a group of 25 preschool children selected to participate in a research study. The average age is an example of a statistic. 4.The median is the most commonly used measure of central tendency. 5.The mode is the best way to measure central tendency for data from a nominal scale of measurement. 6.A distribution of scores and a mean of 55 and a standard deviation of 4. The variance for this distribution is 16. 7.In a distribution with a mean of M = 36 and a standard deviation of SD = 8, a score of 40 would be considered an extreme value. 8.In a distribution with a

Question
Describing quantitative data
asked 2020-12-24
True or False
1.The goal of descriptive statistics is to simplify, summarize, and organize data.
2.A summary value, usually numerical, that describes a sample is called a parameter.
3.A researcher records the average age for a group of 25 preschool children selected to participate in a research study. The average age is an example of a statistic.
4.The median is the most commonly used measure of central tendency.
5.The mode is the best way to measure central tendency for data from a nominal scale of measurement.
6.A distribution of scores and a mean of 55 and a standard deviation of 4. The variance for this distribution is 16.
7.In a distribution with a mean of M = 36 and a standard deviation of SD = 8, a score of 40 would be considered an extreme value.
8.In a distribution with a mean of M = 76 and a standard deviation of SD = 7, a score of 91 would be considered an extreme value.
9.A negative correlation means that as the X values decrease, the Y values also tend to decrease.
10.The goal of a hypothesis test is to demonstrate that the patterns observed in the sample data represent real patterns in the population and are not simply due to chance or sampling error.

Answers (1)

2020-12-25
Step 1
Note:
As your question have multiple questions, we have solved the first question for you. If you need any specific question to be answered, please re-submit the question by specifying the question number or name.
Step 2
1. Descriptive statistics:
Descriptive statistics is mainly used to describe the given data by providing the summary statistics. The descriptive measures helps in simplifying the large data by describing the basic features of it. Both the quantitative and qualitative data can be organized by virtually displaying the and appropriate simple graphs.
From the definition of descriptive statistics, it can be said that the descriptive statistics are used to simplify, summarize and organize data.
The given statement is, “The goal of descriptive statistics is to simplify, summarize and organize data”.
Since, our explanation of descriptive statistics and the given statement are true, the given statement is appropriate.
The given statement is True.
0

Relevant Questions

asked 2021-05-05

A random sample of \( n_1 = 14 \) winter days in Denver gave a sample mean pollution index \( x_1 = 43 \).
Previous studies show that \( \sigma_1 = 19 \).
For Englewood (a suburb of Denver), a random sample of \( n_2 = 12 \) winter days gave a sample mean pollution index of \( x_2 = 37 \).
Previous studies show that \( \sigma_2 = 13 \).
Assume the pollution index is normally distributed in both Englewood and Denver.
(a) State the null and alternate hypotheses.
\( H_0:\mu_1=\mu_2.\mu_1>\mu_2 \)
\( H_0:\mu_1<\mu_2.\mu_1=\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1<\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1\neq\mu_2 \)
(b) What sampling distribution will you use? What assumptions are you making? NKS The Student's t. We assume that both population distributions are approximately normal with known standard deviations.
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations.
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations.
(c) What is the value of the sample test statistic? Compute the corresponding z or t value as appropriate.
(Test the difference \( \mu_1 - \mu_2 \). Round your answer to two decimal places.) NKS (d) Find (or estimate) the P-value. (Round your answer to four decimal places.)
(e) Based on your answers in parts (i)−(iii), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level \alpha?
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are not statistically significant.
(f) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver. (g) Find a 99% confidence interval for
\( \mu_1 - \mu_2 \).
(Round your answers to two decimal places.)
lower limit
upper limit
(h) Explain the meaning of the confidence interval in the context of the problem.
Because the interval contains only positive numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, we can not say that the mean population pollution index for Englewood is different than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains only negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is less than that of Denver.
asked 2021-02-25
We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:
a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.
b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.
c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.
d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.
Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.
asked 2020-10-23
1. Find each of the requested values for a population with a mean of \(? = 40\), and a standard deviation of \(? = 8\) A. What is the z-score corresponding to \(X = 52?\) B. What is the X value corresponding to \(z = - 0.50?\) C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores? E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\) 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\). 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.
asked 2021-04-13
As depicted in the applet, Albertine finds herself in a very odd contraption. She sits in a reclining chair, in front of a large, compressed spring. The spring is compressed 5.00 m from its equilibrium position, and a glass sits 19.8m from her outstretched foot.
a)Assuming that Albertine's mass is 60.0kg , what is \(\displaystyle\mu_{{k}}\), the coefficient of kinetic friction between the chair and the waxed floor? Use \(\displaystyle{g}={9.80}\frac{{m}}{{s}^{{2}}}\) for the magnitude of the acceleration due to gravity. Assume that the value of k found in Part A has three significant figures. Note that if you did not assume that k has three significant figures, it would be impossible to get three significant figures for \(\displaystyle\mu_{{k}}\), since the length scale along the bottom of the applet does not allow you to measure distances to that accuracy with different values of k.
asked 2021-02-25
Give a full and correct answer Why is it important that a sample be random and representative when conducting hypothesis testing? Representative Sample vs. Random Sample: An Overview Economists and researchers seek to reduce sampling bias to near negligible levels when employing statistical analysis. Three basic characteristics in a sample reduce the chances of sampling bias and allow economists to make more confident inferences about a general population from the results obtained from the sample analysis or study: * Such samples must be representative of the chosen population studied. * They must be randomly chosen, meaning that each member of the larger population has an equal chance of being chosen. * They must be large enough so as not to skew the results. The optimal size of the sample group depends on the precise degree of confidence required for making an inference. Representative sampling and random sampling are two techniques used to help ensure data is free of bias. These sampling techniques are not mutually exclusive and, in fact, they are often used in tandem to reduce the degree of sampling error in an analysis and allow for greater confidence in making statistical inferences from the sample in regard to the larger group. Representative Sample A representative sample is a group or set chosen from a larger statistical population or group of factors or instances that adequately replicates the larger group according to whatever characteristic or quality is under study. A representative sample parallels key variables and characteristics of the large society under examination. Some examples include sex, age, education level, socioeconomic status (SES), or marital status. A larger sample size reduced sampling error and increases the likelihood that the sample accurately reflects the target population. Random Sample A random sample is a group or set chosen from a larger population or group of factors of instances in a random manner that allows for each member of the larger group to have an equal chance of being chosen. A random sample is meant to be an unbiased representation of the larger population. It is considered a fair way to select a sample from a larger population since every member of the population has an equal chance of getting selected. Special Considerations: People collecting samples need to ensure that bias is minimized. Representative sampling is one of the key methods of achieving this because such samples replicate as closely as possible elements of the larger population under study. This alone, however, is not enough to make the sampling bias negligible. Combining the random sampling technique with the representative sampling method reduces bias further because no specific member of the representative population has a greater chance of selection into the sample than any other. Summarize this article in 250 words.
asked 2020-11-01
Identify the appropriate hypothesis test for each of the following research situations using the options: The null hypothesis, The Test Statistics, The Sample Statistic, The Standard Error, and The Alpha Level.
A researcher conducts a cross-sectional developmental study to determine whether there is a significant difference in vocabulary skills between 8-year-old and 10-year-old children. A researcher determines that 8% of the males enrolled in Introductory Psychology have some form of color blindness, compared to only 2% of the females. Is there a significant relationship between color blindness and gender?
A researcher records the daily sugar consumption and the activity level for each of 20 children enrolled in a summer camp program. The researcher would like to determine whether there is a significant relationship between sugar consumption and activity level.
A researcher would like to determine whether a 4-week therapy program produces significant changes in behavior. A group of 25 participants is measured before therapy, at the end of therapy, and again 3 months after therapy.
A researcher would like to determine whether a new program for teaching mathematics is significantly better than the old program. It is suspected that the new program will be very effective for small-group instruction but probably will not work well with large classes. The research study involves comparing four groups of students: a small class taught by the new method, a large class taught by the new method, a small class taught by the old method, and a large class taught by the old method.
asked 2021-02-23
1. A researcher is interested in finding a 98% confidence interval for the mean number of times per day that college students text. The study included 144 students who averaged 44.7 texts per day. The standard deviation was 16.5 texts. a. To compute the confidence interval use a ? z t distribution. b. With 98% confidence the population mean number of texts per day is between and texts. c. If many groups of 144 randomly selected members are studied, then a different confidence interval would be produced from each group. About percent of these confidence intervals will contain the true population number of texts per day and about percent will not contain the true population mean number of texts per day. 2. You want to obtain a sample to estimate how much parents spend on their kids birthday parties. Based on previous study, you believe the population standard deviation is approximately \(\displaystyle\sigma={40.4}\) dollars. You would like to be 90% confident that your estimate is within 1.5 dollar(s) of average spending on the birthday parties. How many parents do you have to sample? n = 3. You want to obtain a sample to estimate a population mean. Based on previous evidence, you believe the population standard deviation is approximately \(\displaystyle\sigma={57.5}\). You would like to be 95% confident that your estimate is within 0.1 of the true population mean. How large of a sample size is required?
asked 2020-11-23
Geographical Analysis (Oct. 2006) published a study of a new method for analyzing remote-sensing data from satellite pixels in order to identify urban land cover. The method uses a numerical measure of the distribution of gaps, or the sizes of holes, in the pixel, called lacunarity. Summary statistics for the lacunarity measurements in a sample of 100 grassland pixels are x¯=225 and s=20s=20. It is known that the mean lacunarity measurement for all grassland pixels is 220. The method will be effective in identifying land cover if the standard deviation of the measurements is 10% (or less) of the true mean (i.e., if the standard deviation is less than 22). a. Give the null and alternative hypotheses for a test to determine whether, in fact, the standard deviation of all grassland pixels is less than 22. b. A MINITAB analysis of the data is provided below. Locate and interpret the p-value of the test. Use α=.10α=.10. Test for One Standard Deviation Method Null hypothesisSigma = 22 Method Alternative hypothesisSigma = < 22 The standard method is only for the normal distribution. Statistics NStDevVariance 10020.0400 Tests
asked 2020-11-09
A researcher is interested in finding a \(90\%\) confidence interval for the mean number minutes students are concentrating on their professor during a one hour statistics lecture. The study included 117 students who averaged 40.9 minutes concentrating on their professor during the hour lecture. The standard deviation was 11.8 minutes. Round answers to 3 decimal places where possible.
a.
To compute the confidence interval use a ? distribution.
b.
With \(90\%\) confidence the population mean minutes of concentration is between ____ and ____ minutes.
c.
If many groups of 117 randomly selected students are studied, then a different confidence interval would be produced from each group. About ____ percent of these confidence intervals will contain the true population mean minutes of concentration and about ____ percent will not contain the true population mean number of minutes of concentration.
asked 2020-12-25
Case: Dr. Jung’s Diamonds Selection
With Christmas coming, Dr. Jung became interested in buying diamonds for his wife. After perusing the Web, he learned about the “4Cs” of diamonds: cut, color, clarity, and carat. He knew his wife wanted round-cut earrings mounted in white gold settings, so he immediately narrowed his focus to evaluating color, clarity, and carat for that style earring.
After a bit of searching, Dr. Jung located a number of earring sets that he would consider purchasing. But he knew the pricing of diamonds varied considerably. To assist in his decision making, Dr. Jung decided to use regression analysis to develop a model to predict the retail price of different sets of round-cut earrings based on their color, clarity, and carat scores. He assembled the data in the file Diamonds.xls for this purpose. Use this data to answer the following questions for Dr. Jung.
1) Prepare scatter plots showing the relationship between the earring prices (Y) and each of the potential independent variables. What sort of relationship does each plot suggest?
2) Let X1, X2, and X3 represent diamond color, clarity, and carats, respectively. If Dr. Jung wanted to build a linear regression model to estimate earring prices using these variables, which variables would you recommend that he use? Why?
3) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
4) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
5) Dr. Jung now remembers that it sometimes helps to perform a square root transformation on the dependent variable in a regression problem. Modify your spreadsheet to include a new dependent variable that is the square root on the earring prices (use Excel’s SQRT( ) function). If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
1
6) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
7) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must actually square the model’s estimates to convert them to price estimates.) Which sets of earring appears to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
8) Dr. Jung now also remembers that it sometimes helps to include interaction terms in a regression model—where you create a new independent variable as the product of two of the original variables. Modify your spreadsheet to include three new independent variables, X4, X5, and X6, representing interaction terms where: X4 = X1 × X2, X5 = X1 × X3, and X6 = X2 × X3. There are now six potential independent variables. If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
9) Suppose Dr. Jung decides to use color (X1), carats (X3) and the interaction terms X4 (color * clarity) and X5 (color * carats) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
10) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must square the model’s estimates to convert them to actual price estimates.) Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
...