Question

To explain:The shape of the new distribution and the measure of center and variation affected in a given data.

Bivariate numerical data
ANSWERED
asked 2020-11-27
To explain:The shape of the new distribution and the measure of center and variation affected in a given data.

Answers (1)

2020-11-28
Given:
A data set is a symmetric distribution.
Every value in the data set is doubled.
Concept used:
Bivariate joint frequency distribution are contingency table.
The total row and total column of the marginal distribution while the body of the table is the joint frequencies
Calculation:
The height will be doubled but will still be symmetric.
Each value in a numerical data set is multiplied by a real number k
Where k > 0
The measures of center and variation is founded by multiplying the original measures by k
Therefore,
This is also dobled.
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-05-14
Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type.
\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)
a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)
MPa
State which estimator you used.
\(x\)
\(p?\)
\(\frac{s}{x}\)
\(s\)
\(\tilde{\chi}\)
b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).
MPa
State which estimator you used.
\(s\)
\(x\)
\(p?\)
\(\tilde{\chi}\)
\(\frac{s}{x}\)
c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)
MPa
Interpret this point estimate.
This estimate describes the linearity of the data.
This estimate describes the bias of the data.
This estimate describes the spread of the data.
This estimate describes the center of the data.
Which estimator did you use?
\(\tilde{\chi}\)
\(x\)
\(s\)
\(\frac{s}{x}\)
\(p?\)
d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)
e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)
State which estimator you used.
\(p?\)
\(\tilde{\chi}\)
\(s\)
\(\frac{s}{x}\)
\(x\)
asked 2021-08-18
Explain how the value of n, the number of trials in a binomial experiment, affects the shape of the distribution of a binomial random variable.
asked 2021-02-01
What is the correlation coefficient and what is its significance? Explain why correlation coefficient is bound between -1 and 1. How correlation coefficient depicts itself in scatterplots? Aside from probabilistic models, explain what is least squares line fitting.
asked 2020-11-09
When working with bivariate data, which of these are useful when deciding whether it’s appropriate to use a linear model?
I. the scatterplot
II. the residuals plot
III. the correlation coefficient
A) I only
B) II only
C) III only
D) I and II only
E) I, II, and III
...