The length of a rectangle is 4 less than twice

Teddy Dillard 2021-12-26 Answered
The length of a rectangle is 4 less than twice the width. The area of the rectangle is 70 square feet. Find the width, w, of the rectangle algebraically. Explain why one of the solutions for w is not viable.
You can still ask an expert for help

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Suhadolahbb
Answered 2021-12-27 Author has 32 answers

Let weigth of rectangle be w
length of rectangle be 2w4
Area of rectangle =70 sq. feetask
lenght×weight=70
(2w4)w=70
2w24w=70
2w24w70=0
w22w35=0
w2(75)w35=0
w27w+5w35=0
w(w7)+5(w7)=0
(w7)(w+5)=0
w=7,5
w=5 is not possible [width cannot be negtive]
width of rectangle=7ft
Length of rectangle=(2×7)4
=144
=10ft

Not exactly what you’re looking for?
Ask My Question
psor32
Answered 2021-12-28 Author has 33 answers
Let the width be x.
Then the length is 2x4.
Area =Lengthwidth
70=x(2x4)
x(x2)=35
x22x35=0
x27x+5x35=0
x(x7)+5(x7)=0
(x+5)(x7)=0
x=7 or x=5
Since the width is positive x=5 is not possible. x=7 is the solution.
The width is 7 feet.
Not exactly what you’re looking for?
Ask My Question
karton
Answered 2022-01-04 Author has 439 answers

Explanation:
Let wwidthArea=(length)(width)(2w4)(w)=702w24w=70w22w=35w22w35=0(w7)(w+5)=0So w=7 or w=5
w=5 isn't viable because measurements have to be above zero.

Not exactly what you’re looking for?
Ask My Question

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

New questions