Choose an appropriate test from the list of five tests for the given case.

EunoR 2020-11-03 Answered
Choose an appropriate test from the list of five tests for the given case.
You can still ask an expert for help

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Faiza Fuller
Answered 2020-11-04 Author has 108 answers
Consider a situation where there is a random sample of students who attend a public university and a study is conducted to determine whether the racial distribution of students is different from the racial distribution in the state as a whole.
Chi-square goodness-of-fit test is applied when there is one categorical variable selected from a single population. It tests whether the distribution of this single categorical variable follows the theoretical distribution.
In this situation, the sample was collected randomly. Each observation is independent of all other observations. It is also assumed that expected counts are large. As the hypothesis in this situation is to test whether true distribution of race (categorical variable) is different from proposed distribution, chi-square goodness-of-fit test is most appropriate.
Therefore, the appropriate test is Chi-square goodness-of-fit test.
Not exactly what you’re looking for?
Ask My Question

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

You might be interested in

asked 2020-12-01
Calculate the period of prey and predator populations using the approximation if T=7.25
asked 2021-12-19
Suppose summation an and summation bn are series with positive terms and summation bn is known to be divergent. If an<bn for all n, what can you say about summation an? Why?
asked 2021-06-16
Let p be the population proportion for the situation. (a) Find point estimates of p and q, (b) construct 90% and 95% confidence intervals for p, and (c) interpret the results of part (b) and compare the widths of the confidence intervals. In a survey of 2202 U.S. adults, 1167 think antibiotics are effective against viral infections.
asked 2021-03-07

In an experiment designed to study the effects of illumination level on task performance (“Performance of Complex Tasks Under Different Levels of Illumination,” J. Illuminating Eng., 1976: 235–242), subjects were required to insert a fine-tipped probe into the eyeholes of ten needles in rapid succession both for a low light level with a black background and a higher level with a white background. Each data value is the time (sec) required to complete the task.
\(\begin{array}{|c|c|} \hline Subject & (1) & (2) & (3) & (4) & (5) &(6) & (7) & (8) & (9) \\ \hline Black & 25.85 & 28.84 & 32.05 & 25.74 & 20.89 & 41.05 & 25.01 & 24.96 & 27.47 \\ \hline White & 18.28 & 20.84 & 22.96 & 19.68 & 19.509 & 24.98 & 16.61 & 16.07 & 24.59 \\ \hline \end{array}\)
Does the data indicate that the higher level of illumination yields a decrease of more than 5 sec in true average task completion time? Test the appropriate hypotheses using the P-value approach.

asked 2020-12-28

Is statistical inference intuitive to babies? In other words, are babies able to generalize from sample to population? In this study,1 8-month-old infants watched someone draw a sample of five balls from an opaque box. Each sample consisted of four balls of one color (red or white) and one ball of the other color. After observing the sample, the side of the box was lifted so the infants could see all of the balls inside (the population). Some boxes had an “expected” population, with balls in the same color proportions as the sample, while other boxes had an “unexpected” population, with balls in the opposite color proportion from the sample. Babies looked at the unexpected populations for an average of 9.9 seconds (\(sd = 4.5\) seconds) and the expected populations for an average of 7.5 seconds (\(sd = 4.2\) seconds). The sample size in each group was 20, and you may assume the data in each group are reasonably normally distributed. Is this convincing evidence that babies look longer at the unexpected population, suggesting that they make inferences about the population from the sample? Let group 1 and group 2 be the time spent looking at the unexpected and expected populations, respectively. A) Calculate the relevant sample statistic. Enter the exact answer. Sample statistic: _____

B) Calculate the t-statistic. Round your answer to two decimal places. t-statistic = ___________

C) Find the p-value. Round your answer to three decimal places. p-value =__________

asked 2022-03-12
When to use a chi- square test?
asked 2022-03-04
A mental health treatment center wanted to compare group therapy vs. individual therapy. They are interested in the relationship between treatment type (group, individual) and treatment completion (yes/no). What type of statistical test should be used?

New questions

Linear multivariate recurrences with constant coefficients
In the theory of univariate linear recurrences with constant coefficients, there is a general method of solving initial value problems based on characteristic polynomials. I would like to ask, if any similar method is known for multivariate linear recurrences with constant coefficients. E.g., if there is a general method for solving recurrences like this:
f ( n + 1 , m + 1 ) = 2 f ( n + 1 , m ) + 3 f ( n , m ) f ( n 1 , m ) , f ( n , 0 ) = 1 , f ( 0 , m ) = m + 2.
Moreover, is their any method for solving recurrences in several variables, when the recurrence goes only by one of the variables? E.g., recurrences like this:
f ( n + 1 , m ) = f ( n , 2 m ) + f ( n 1 , 0 ) , f ( 0 , m ) = m .
This second question is equivalent to the question, if there is a method of solving infinite systems of linear univariate recurrences with constant coefficients. That is, using these optics, the second recurrence becomes f m ( n + 1 ) = f 2 m ( n ) + f 0 ( n 1 ) , f m ( 0 ) = m , m = 0 , 1 , .
I am not interested in a solution of any specific recurrence, but in solving such recurrences in general, or at least in finding out some of the properties of possible solutions. For instance, for univariate linear recurrences, each solution has a form c 1 p 1 ( n ) z 1 n + + c k p k ( n ) z k n ,, where c i 's are constants, p i 's are polynomials and z i 's are complex numbers. Does any similar property hold for some class of recurrences similar to what I have written?
I have been googling a lot, but have found only methods for some very special cases (in monographs on partial difference equations, etc.), but nothing general enough. I am not asking for a detailed explanation of any method, but references to the literature would be helpful. I don't know much about transforms (like discrete Fourier transform or z-transform), but I found certain hints that there could be a method based on these techniques. Is it possible to develop something general enough using transform, i.e., is the study of transforms worth an effort (in the context of solving these types of recurrences)? However, it seems to me that the generalization of the characteristic polynomial method (perhaps, some operator-theoretic approach) could lead to more general results. Has there been any research on this topic?