Compare the chi-square p-value and Fisher's exact test p-value and determine which is more accurate.

Maiclubk 2020-12-05 Answered
Compare the chi-square p-value and Fisher's exact test p-value and determine which is more accurate.

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

Dora
Answered 2020-12-06 Author has 17426 answers
The p-value for chi-square test is obtained as 0.038 in and the p-value for Fisher's exact test is obtained as 0.079722.
There is a huge difference between the p-value of both the tests. One test rejects the hypothesis whereas another test accepts the null hypothesis. However, Fisher's exact test is more accurate as chi-square is a best approximation for large samples and the given sample is fairly small.
Therefore, Fisher's exact test gives more precise and exact result and, therefore, it can be concluded that there is no association between the presence of the robots and whether the cockroaches went to one shelter or two shelters.
Have a similar question?
Ask An Expert
36
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-06-11

\(\begin{array}{cc}\hline & \text{Afraid to walk at night?} \\ \hline & \text{Yes} & \text{No} & \text{Total} \\ \hline \text{Male} & 173 & 598 & 771 \\ \hline \text{Female} & 393 & 540 & 933 \\ \hline \text{Total} & 566 & 1138 & 1704 \\ \hline \text{Source:}2014\ GSS \end{array}\)
If the chi-square \((\chi 2)\) test statistic \(=73.7\) what is the p-value you would report? Use Table C.Remember to calculate the df first.
Group of answer choices
\(P>0.250\)
\(P=0.01\)
\(P<0.001\)
\(P<0.002\)
image
\(\begin{array}{|c|cc|}\hline & \text{Right-Tail Probability} \\ \hline df & 0.250 & 0.100 & 0.050 & 0.025 & 0.010 & 0.005 & 0.001 \\ \hline 1 & 1.32 & 2.71 & 3.84 & 5.02 & 6.63 & 7.88 & 10.83 \\ 2 & 2.77 & 4.61 & 5.99 & 7.38 & 9.21 & 10.60 & 13.82 \\ 3 & 4.11 & 6.25 & 7.81 & 9.35 & 11.34 & 12.84 & 16.27 \\ 4 & 5.39 & 7.78 & 9.49 & 11.14 & 13.28 & 14.86 & 18.47 \\ 5 & 6.63 & 9.24 & 11.07 & 12.83 & 15.09 & 16.75 & 20.52 \\ 6&7.84&10.64&12.59&14.45&16.81&18.55&22.46 \\ 7&9.04&12.02&14.07&16.01&18.48&20.28&24.32\\ 8&10.22&13.36&15.51&17.53&20.09&21.96&26.12 \\ 9&11.39&14.68&16.92&19.02&21.67&23.59&27.88 \\ 10&12.55&15.99&18.31&20.48&23.21&25.19&29.59 \\ 11&13.70&17.28&19.68&21.92&24.72&26.76&31.26 \\ 12&14.85&18.55&21.03&23.34&26.22&28.30&32.91 \\ 13&15.98&19.81&22.36 & 24.74 & 27.69 & 29.82 & 34.53 \\ 14 & 17.12 & 21.06 & 23.68 & 26.12 & 29.14 & 31.32 & 36.12 \\15 & 18.25 & 22.31 & 25.00 & 27.49 & 30.58 & 32.80 & 37.70 \\ 16 & 19.37 & 32.54 & 26.30 & 28.85 & 32.00 & 34.27 & 39.25 \\ 17 & 20.49 & 24.77 & 27.59 & 30.19 & 33.41 & 35.72 & 40.79 \\ 18 & 21.60 & 25.99 & 28.87 & 31.53 & 34.81 & 37.16 & 42.31 \\ 19 & 22.72 & 27.20 & 30.14 & 32.85 & 36.19 & 38.58 & 43.82 \\ 20 & 23.83 & 28.41 & 31.41 & 34.17 & 37.57 & 40.00 & 45.32 \\ \hline \end{array}\)

asked 2020-12-25
Explain what changes would be required so that you could analyze the hypothesis using a chi-square test. For instance, rather than looking at test scores as a range from 0 to 100, you could change the variable to low, medium, or high. What advantages and disadvantages do you see in using this approach? Which is the better option for this hypothesis, the parametric approach or nonparametric approach?
asked 2021-01-08
Chi-square tests are nonparametric tests that examine nominal categories as opposed to numerical values. Consider a situation in which you may want to transform numerical scores into categories. Provide a specific example of a situation in which categories are more informative than the actual values.
asked 2021-01-25
A chi square test tells us:
a. Whether two continuous variables are correlated with each other.
b. Whether two discrete variables are independent of each other
c. The amount of variation in one variable explained by the other
d. Which categories of one variable are associated with which categories of the other variable
asked 2021-02-18
Determine whether the chi-square test is applied to the categorical or the numerical data.
asked 2020-10-20
A) Explain why the chi-square goodness-of-fit test is not an appropriate way to find out.
B) What might you do instead of weighing the nuts in order to use a x2 test?
Nuts A company says its premium mixture of nuts con- tains 10% Brazil nuts, 20% cashews, 20% almonds, and 10% hazelnuts, and the rest are peanuts. You buy a large can and separate the various kinds of nuts. Upon weigh- ing them, you find there are 112 grams of Brazil nuts, 183 grams of cashews, 207 grams of almonds, 71 grams of hazelnuts, and 446 grams of peanuts. You wonder whether your mix is significantly different from what the company advertises.
asked 2021-02-12
For the following situations, identify the test you would run to analyze the data:
A marketing firm producing costumes is interested in studying consumer behavior in the context of purchase decision of costumes in a specific market. This company is a major player in the costume market that is characterized by intense competition. The company would like to know in particular whether the income level of the consumers (measured as lower, middle, upper middle, and upper class) influences their choice of costume type. They are specifically focused on four types of costumes (funny costumes, scary costumes, clever costumes, and boring costumes).
a. Chi-Square Goodness of Fit
b. Frequencies
c. Descriptive Statistics
d. Chi-Square of Independence
...