You want to know whether people in different regions of the country are equally likely to vote Sarah Duterte, Peter Cayetano, Mar Roxas, or any candid

Chi-square tests
asked 2020-12-09
You want to know whether people in different regions of the country are equally likely to vote Sarah Duterte, Peter Cayetano, Mar Roxas, or any candidate other than the three in the next election. You would use
A. chi-square test of independence.
B. either chi-square test (goodness-of-fit or test of independence), depending on how you set up the problem.
C. chi-square goodness-of-fit test.
D. both chi-square tests, in order to check the results of one with the other.

Answers (1)

Step 1
The Chi-Square Test of Independence determines whether there is an association between categorical variables (i.e., whether the variables are independent or related). It is a nonparametric test.
This test is also known as:
-Chi-Square Test of Association.
This test utilizes a contingency table to analyze the data. A contingency table (also known as a cross-tabulation, crosstab, or two-way table) is an arrangement in which data is classified according to two categorical variables.
The categories for one variable appear in the rows, and the categories for the other variable appear in columns. Each variable must have two or more categories. Each cell reflects the total count of cases for a specific pair of categories.
Chi-Square goodness of fit test is a non-parametric test that is used to find out how the observed value of a given phenomena is significantly different from the expected value. In Chi-Square goodness of fit test, the term goodness of fit is used to compare the observed sample distribution with the expected probability distribution. Chi-Square goodness of fit test determines how well theoretical distribution (such as normal, binomial, or Poisson) fits the empirical distribution. In Chi-Square goodness of fit test, sample data is divided into intervals. Then the numbers of points that fall into the interval are compared, with the expected numbers of points in each interval.
Step 2
Since, we are to test whether people in different regions of the country are equally likely to vote Sarah Duterte, Peter Cayetano, Mar Roxas, or any candidate other than the three in the next election we will use Chi-Square goodness of fit test.
A Chi-Square for goodness of fit test is a test used to assess whether the observed data can be claimed to reasonably fit the expected data. Sometimes, a Chi-Square test for goodness of fit is referred as a test for multinomial experiments, because there is a fixed number of N categories, and each of the outcomes of the experiment falls in exactly one of those categories. Then, based on sample information, the test uses a Chi-Square statistic to assess if the expected proportions for all categories reasonably fit the sample data. The main properties of a one sample Chi-Square test for goodness of fit are:
- The distribution of the test statistic is the Chi-Square distribution, with n-1 degrees of freedom, where n is the number of categories
- The Chi-Square distribution is one of the most important distributions in statistics, together with the normal distribution and the F-distribution
The formula for a Chi-Square statistic is
One of the most common uses for this test is to assess whether a sample come from a population with a specific population(this is, for example, using this test we can assess if a sample comes from a normally distributed popelation or not).
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-02-12
For the following situations, identify the test you would run to analyze the data:
A marketing firm producing costumes is interested in studying consumer behavior in the context of purchase decision of costumes in a specific market. This company is a major player in the costume market that is characterized by intense competition. The company would like to know in particular whether the income level of the consumers (measured as lower, middle, upper middle, and upper class) influences their choice of costume type. They are specifically focused on four types of costumes (funny costumes, scary costumes, clever costumes, and boring costumes).
a. Chi-Square Goodness of Fit
b. Frequencies
c. Descriptive Statistics
d. Chi-Square of Independence
asked 2021-03-05
For each of the following situations, state whether you’d use a chi-square goodness-of-fit test, a chi-square test of homogeneity, a chi-square test of independence, or some other statistical test:
a) Is the quality of a car affected by what day it was built? A car manufacturer examines a random sample of the warranty claims filed over the past two years to test whether defects are randomly distributed across days of the work week.
b) A medical researcher wants to know if blood cholesterol level is related to heart disease. She examines a database of 10,000 patients, testing whether the cholesterol level (in milligrams) is related to whether or not a person has heart disease.
c) A student wants to find out whether political leaning (liberal, moderate, or conservative) is related to choice of major. He surveys 500 randomly chosen students and performs a test.
asked 2020-10-20
A) Explain why the chi-square goodness-of-fit test is not an appropriate way to find out.
B) What might you do instead of weighing the nuts in order to use a x2 test?
Nuts A company says its premium mixture of nuts con- tains 10% Brazil nuts, 20% cashews, 20% almonds, and 10% hazelnuts, and the rest are peanuts. You buy a large can and separate the various kinds of nuts. Upon weigh- ing them, you find there are 112 grams of Brazil nuts, 183 grams of cashews, 207 grams of almonds, 71 grams of hazelnuts, and 446 grams of peanuts. You wonder whether your mix is significantly different from what the company advertises.
asked 2021-08-10
Suppose that you want to perform a hypothesis test based on independent random samples to compare the means of two populations. For each part, decide whether you would use the pooled t-test, the nonpooled t-test, the Mann– Whitney test, or none of these tests if preliminary data analyses of the samples suggest that the two distributions of the variable under consideration are a. normal but do not have the same shape. b. not normal but have the same shape. c. not normal and do not have the same shape. both sample sizes are large.