Question

Explain what changes would be required so that you could analyze the hypothesis using a chi-square test. For instance, rather than looking at test sco

Chi-square tests
ANSWERED
asked 2020-12-25
Explain what changes would be required so that you could analyze the hypothesis using a chi-square test. For instance, rather than looking at test scores as a range from 0 to 100, you could change the variable to low, medium, or high. What advantages and disadvantages do you see in using this approach? Which is the better option for this hypothesis, the parametric approach or nonparametric approach?

Expert Answers (1)

2020-12-26
Step 1
The changes would be required so that you could analyze the hypothesis using a chi-square test are:
Step 2
In ANOVA, we have two or more group means that we have to compare.
In Chi square test, we have two categorical variables and want to determine whether one variable is related to the other variable.
Thus, for changing from ANOVA to chi square, rather than looking at test scores as a range from 0 to 100, we could change the variable to low, medium or high, so that it become categorical, thus amenable for chi square test.
Step 3
Advantages of chi-square test over ANOVA:
Chi-square test is robust with respect to the distribution of the data due to its non-parametric characteristic.
Disadvantages of chi-square test over ANOVA:
Chi-square test does not give much information about the strength of the relationship. It is sensitive to sample size. It is sensitive to to small expected frequencies in one or more cells in the \(\displaystyle\chi^{{2}}\) table.
Step 4
Non-parametric test is better option for this hypothesis since data are not given as normally distributed and the non-parametric test which is distribution free is applicable
41
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-02-16
A quarterback claims that he can throw the football ahorizontal distance of 183 m (200 yd). Furthermore, he claims thathe can do this by launching the ball at the relatively low angle of 30.0 degree above the horizontal. To evaluate this claim, determinethe speed with which this quarterback must throw the ball. Assumethat the ball is launched and caught at the same vertical level andthat air resistance can be ignored. For comparison, a baseballpitcher who can accurately throw a fastball at 45 m/s (100 mph)would be considered exceptional.
asked 2021-05-14
When σ is unknown and the sample size is \(\displaystyle{n}\geq{30}\), there are tow methods for computing confidence intervals for μμ. Method 1: Use the Student's t distribution with d.f. = n - 1. This is the method used in the text. It is widely employed in statistical studies. Also, most statistical software packages use this method. Method 2: When \(\displaystyle{n}\geq{30}\), use the sample standard deviation s as an estimate for σσ, and then use the standard normal distribution. This method is based on the fact that for large samples, s is a fairly good approximation for σσ. Also, for large n, the critical values for the Student's t distribution approach those of the standard normal distribution. Consider a random sample of size n = 31, with sample mean x¯=45.2 and sample standard deviation s = 5.3. (c) Compare intervals for the two methods. Would you say that confidence intervals using a Student's t distribution are more conservative in the sense that they tend to be longer than intervals based on the standard normal distribution?
asked 2021-06-13
1. Who seems to have more variability in their shoe sizes, men or women?
a) Men
b) Women
c) Neither group show variability
d) Flag this Question
2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?
a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation
b) The estimate n-1 is never used to calculate the sample variance and standard deviation
c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population
d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.
\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)
\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)
asked 2021-01-08
Chi-square tests are nonparametric tests that examine nominal categories as opposed to numerical values. Consider a situation in which you may want to transform numerical scores into categories. Provide a specific example of a situation in which categories are more informative than the actual values.
...