Question

Assume that T is a linear transformation. Find the standard matrix of T.T=RR^2rarrRR^4 such that T(e_1)=(7,1,7,1),and T(e_2)=(-8,5,0,0),where e_1=(1,0), and e_2=(0,1).

Alternate coordinate systems
ANSWERED
asked 2020-12-28

Assume that T is a linear transformation. Find the standard matrix of T.
\(\displaystyle{T}=\mathbb{R}^{{2}}\rightarrow\mathbb{R}^{{4}}\ {s}{u}{c}{h} \ {t}hat \ {{T}}{\left({e}_{{1}}\right)}={\left({7},{1},{7},{1}\right)},\).

\({\quad\text{and}\quad}{T}{\left({e}_{{2}}\right)}={\left(-{8},{5},{0},{0}\right)},{w}{h}{e}{r}{e}{\ e}_{{1}}={\left({1},{0}\right)},\)

\({\quad\text{and}\quad}{e}_{{2}}={\left({0},{1}\right)}\)

Expert Answers (1)

2020-12-29

Let \(\displaystyle{T}:{V}\rightarrow{W}\) be a linear transformation. Suppose dim \(\displaystyle{V}={n},{\quad\text{and}\quad}{S}={\left\lbrace{v}_{{1}},\ldots,{v}_{{n}}\right\rbrace}\) is an ordered basis for V and suppose dim \(\displaystyle{W}={m}{\quad\text{and}\quad}{B}={\left\lbrace{w}_{{1}},\ldots,{w}_{{m}}\right\rbrace}\) is an ordered basis for W
1.Calculate \(\displaystyle{T}{\left({v}_{{1}}\right)},{T}{\left({v}_{{2}}\right)},\ldots,{T}{\left({v}_{{n}}\right)}\)
2.Find the coordinate vectors \(\displaystyle{\left({T}{\left({v}_{{1}}\right)}\right)}_{{B}}{\mid}{\left({T}{\left({v}_{{2}}\right)}\right)}_{{B}},\ldots,{\left({T}{\left({v}_{{m}}\right)}\right)}_{{B}}\)
3.Write the matrix with columns as the column vectors calculated in Step 2:
\(\displaystyle{M}={\left[{\left({T}{\left({v}_{{1}}\right)}\right)}_{{B}}{\left|{\left({T}{\left({v}_{{2}}\right)}\right)}_{{B}}\right|}\ldots{\mid}{\left({T}{\left({v}_{{m}}\right)}\right)}_{{B}}\right]}\)
Clearly, here \(\displaystyle{V}=\mathbb{R}^{{2}}{\quad\text{and}\quad}{W}=\mathbb{R}^{{4}}.{H}{e}{r}{e}{S}={\left\lbrace{e}_{{1}}={\left({1},{0}\right)},{e}_{{2}}={\left({0},{1}\right)}\right\rbrace}\)is the standard ordered basis for \(\displaystyle{V}{\quad\text{and}\quad}{B}={\left\lbrace\epsilon_{{1}}={\left({1},{0},{0},{0}\right)},\epsilon_{{2}}={\left({0},{1},{0},{0}\right)},\epsilon_{{3}}={\left({0},{0},{0},{1}\right)},\epsilon_{{4}}={\left({0},{0},{0},{1}\right)}\right\rbrace}\) is the standard ordered basis for W.
Now we calculate \([T(e_1)]_B,[T(e_2)]_B. \ Since \ T(e_1)=(7,1,7,1)\ and \ T(e_2)= (-8,5,0,0)\) it follows that
\(\displaystyle{T}{\left({e}_{{1}}\right)}={7}\epsilon_{{1}}+{1}\epsilon_{{2}}+{7}\epsilon_{{3}}+{1}\epsilon_{{4}}\Rightarrow{\left[{T}{\left({e}_{{1}}\right)}\right]}_{{B}}={\left({7},{1},{7},{1}\right)}\)
\(\displaystyle{T}{\left({e}_{{2}}\right)}={8}\epsilon_{{1}}+{5}\epsilon_{{2}}+{0}\epsilon_{{3}}+{0}\epsilon_{{4}}\Rightarrow{\left[{T}{\left({e}_{{2}}\right)}\right]}_{{B}}={\left(-{8},{5},{0},{0}\right)}\)
Now we create the matrix M with columns as the column as the column vectors of \(\displaystyle{\left[{T}{\left({e}_{{1}}\right)}\right]}_{{B}},{\left[{T}{\left({e}_{{2}}\right)}\right]}_{{B}}\).
Therefore
\(\displaystyle{M}={\left[{T}\right]}={\left[\begin{array}{cc} {7}&-{8}\\{1}&{5}\\{7}&{0}\\{1}&{0}\end{array}\right]}\)

7
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2020-11-10

Consider the following linear transformation \(T : P_2 \rightarrow P_3\), given by \(T(f) = 3x^2 f\)'.

That is, take the first derivative and then multiply by \(3x^2\)

(a) Find the matrix for T with respect to the standard bases of \(P_n\): that is, find \([T]_{\epsilon}^{\epsilon}\), where- \(\epsilon = {1, x, x^2 , x^n}\)

(b) Find N(T) and R(T). You can either work with polynomials or with their coordinate vectors with respect to the standard basis. Write the answers as spans of polynomials.

(c) Find the the matrix for T with respect to the alternate bases: \([T]_A^B\) where \(A = {x - 1, x, x^2 + 1}, B = {x^3, x, x^2, 1}.\)

asked 2020-11-01

Let \(\displaystyle\gamma={\left\lbrace{t}^{{2}}-{t}+{1},{t}+{1},{t}^{{2}}+{1}\right\rbrace}{\quad\text{and}\quad}\beta={\left\lbrace{t}^{{2}}+{t}+{4},{4}{t}^{{2}}-{3}{t}+{2},{2}{t}^{{2}}+{3}\right\rbrace}{b}{e}{\quad\text{or}\quad}{d}{e}{r}{e}{d}{b}{a}{s}{e}{s}{f}{\quad\text{or}\quad}{P}_{{2}}{\left({R}\right)}.\) Find the change of coordinate matrix Q that changes \(\beta \text{ coordinates into } \gamma-\text{ coordinates}\)

asked 2020-10-20

Consider the linear transformation \(\displaystyle{U}:{R}^{{3}}\rightarrow{R}^{{3}}\) defined by \(U \left(\begin{array}{c}x\\ y \\z \end{array}\right) = \left(\begin{array}{c} z - y \\ z + y \\ 3z - x - y \end{array}\right)\) and the bases \(\epsilon = \left\{ \left(\begin{array}{c}1\\ 0 \\0\end{array}\right), \left(\begin{array}{c}0\\ 1 \\ 0\end{array}\right), \left(\begin{array}{c}0\\ 0 \\ 1\end{array}\right) \right\}, \gamma = \left\{ \left(\begin{array}{c}1 - i\\ 1 + i \\ 1 \end{array}\right), \left(\begin{array}{c} -1\\ 1 \\ 0\end{array}\right), \left(\begin{array}{c}0\\ 0 \\ 1\end{array}\right) \right\}\), Compute the four coordinate matrices \(\displaystyle{{\left[{U}\right]}_{{\epsilon}}^{{\gamma}}},{{\left[{U}\right]}_{{\gamma}}^{{\gamma}}},\)

asked 2020-10-21

To solve:
\(\displaystyle{\left(\begin{matrix}{x}-{2}{y}={2}\\{2}{x}+{3}{y}={11}\\{y}-{4}{z}=-{7}\end{matrix}\right)}\)

...