Question

Let f(x,y)=-(xy)/(x^2+y^2).Find limit of f(x,y) as (x,y)rarr(0,0)i)Along y axis and ii)along the line y=x.Evaluate Limes lim_((x,y)rarr(0,0))y.log(x^2+y^2),by converting to polar coordinates.

Let \(\displaystyle{f{{\left({x},{y}\right)}}}=-\frac{{{x}{y}}}{{{x}^{{2}}+{y}^{{2}}}}\).
Find limit of \(f(x,y)\ \text{as}\ (x,y)\ \rightarrow (0,0)\ \text{i)Along y axis and ii)along the line}\ y=x.\ \text{Evaluate Limes}\ \lim_{x,y\rightarrow(0,0)}y\log(x^{2}+y^{2})\),by converting to polar coordinates.

Answers (1)

2021-02-03
\(\displaystyle\lim_{{{\left({x},{y}\right)}\rightarrow{\left({0},{0}\right)}}}{\left(-\frac{{{x}{y}}}{{{x}^{{2}}+{y}^{{2}}}}\right)}\)
Find two dofferent paths to approach the point that gives different values for
Limit of \(\displaystyle\lim_{{{\left({x},{y}\right)}\rightarrow{\left({0},{0}\right)}}}{\left(-\frac{{{x}{y}}}{{{x}^{{2}}+{y}^{{2}}}}\right)}{a}{l}{o}{n}{g}{x}={0}:{0}\)
Limit of \(\displaystyle\lim_{{{\left({x},{y}\right)}\rightarrow{\left({0},{0}\right)}}}{\left(-\frac{{{x}{y}}}{{{x}^{{2}}+{y}^{{2}}}}\right)}{a}{l}{o}{n}{g}{x}={y}:-\frac{{1}}{{2}}\)
\(\displaystyle\therefore\lim_{{{\left({x},{y}\right)}\rightarrow{\left({0},{0}\right)}}}{\left(-\frac{{{x}{y}}}{{{x}^{{2}}+{y}^{{2}}}}\right)}=\div{e}{r}\ge{s}\)
Similary,
\(\displaystyle\Rightarrow\lim_{{{\left({x},{y}\right)}\rightarrow{\left({0},{0}\right)}}}{\left({y}{\ln{{\left({x}^{{2}}+{y}^{{2}}\right)}}}\right)}=\)
Convert to polar coordinates \(\displaystyle\rightarrow{x}={r}{\cos{{\left({0}\right)}}},{y}={r}{\sin{{\left({0}\right)}}}\)
\(\displaystyle=\lim_{{{r}\rightarrow{0}}}{\left({r}{\sin{{\left({0}\right)}}}{\ln{{\left({\left({r}{{\cos{{\left({0}\right)}}}^{{2}}+}{\left({r}{\sin{{\left({0}\right)}}}^{{2}}\right)}\right)}\right.}}}\right.}\)
if \(\displaystyle\lim_{{{x}\rightarrow{a}^{{-}}}}{f{{\left({x}\right)}}}=\lim_{{{x}\rightarrow{a}^{+}}}{f{{\left({x}\right)}}}={L}{t}{h}{e}{n}\lim_{{{x}\rightarrow{a}}}{f{{\left({x}\right)}}}={L}\)
\(\displaystyle\lim_{{{r}\rightarrow{0}^{{-}}}}{\left({r}{\sin{{\left({0}\right)}}}{\ln{{\left({\left({r}{{\cos{{\left({0}\right)}}}^{{2}}+}{\left({r}{\sin{{\left({0}\right)}}}^{{2}}\right)}\right)}={0}\right.}}}\right.}\)
\(\displaystyle\lim_{{{r}\rightarrow{0}^{+}}}{\left({r}{\sin{{\left({0}\right)}}}{\ln{{\left({\left({r}{{\cos{{\left({0}\right)}}}^{{2}}+}{\left({r}{\sin{{\left({0}\right)}}}^{{2}}\right)}\right)}={0}\right.}}}\right.}\)
\(\displaystyle\therefore\lim_{{{\left({x},{y}\right)}\rightarrow{\left({0},{0}\right)}}}{\left({y}{\ln{{\left({x}^{{2}}+{y}^{{2}}\right)}}}\right)}={0}\)
image
image
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours
...