1. The graph of a linear equation in two variables is a _____________________line. 2. The general form of linear equation in two variables is _______________________. 3. Linear equations in three variables are expressed as _________________________. 4. The number of variables in is __________________________. 5. The solution of a linear equation always ________________________ the equation.

1. The graph of a linear equation in two variables is a _____________________line. 2. The general form of linear equation in two variables is _______________________. 3. Linear equations in three variables are expressed as _________________________. 4. The number of variables in is __________________________. 5. The solution of a linear equation always ________________________ the equation.

Question
Forms of linear equations
asked 2021-01-31
1. The graph of a linear equation in two variables is a _____________________line.
2. The general form of linear equation in two variables is _______________________.
3. Linear equations in three variables are expressed as _________________________.
4. The number of variables in is __________________________.
5. The solution of a linear equation always ________________________ the equation.

Answers (1)

2021-02-01

1) We know that, the linear equation in two variable is given by \(ax+by = c\) for a and b not both zero.
So the graph of \(ax+by=c\) is straight line.
Thus, the graph of linear equation in two variable is always a straight line.
2) As mentioned in part 1) the general form of linear equation in two variables is
\(ax + by = c\) where ane0 and bne0.
3) On the similar lines, the linear equation in three variables are expressed as,
\(ax + by + cz = d\) where a, b and c are not all zero simultaneously.

0

Relevant Questions

asked 2021-01-07
Recognize the equation and important characteristics of the different types of conic sections, illustrate systems of nonlinear equations, determine the solutions of system of equations (one linear and one second degree) in two variables using substitution, elimination, and graphing (in standard form), solve situational problems involving systems of non-linear equation
Write the following equation in standard form and sketch it's graph
1.\(9x^2+72x-64y^2+128y+80=0\)
2.\(y^2+56x-18y+417=0\)
3.\(x^2-10x-48y+265=0\)
4.\(x^2+4x+16y^2-128y+292=0\)
asked 2021-02-14

(a) Find a system of two linear equations in the variables x and y whose solution set is given by the parametric equations \(x = t\) and y \(= 3- 2t.\)
(b) Find another parametric solution to the system in part (a) in which the parameter is s and \(y =s.\)

asked 2020-12-25
Case: Dr. Jung’s Diamonds Selection
With Christmas coming, Dr. Jung became interested in buying diamonds for his wife. After perusing the Web, he learned about the “4Cs” of diamonds: cut, color, clarity, and carat. He knew his wife wanted round-cut earrings mounted in white gold settings, so he immediately narrowed his focus to evaluating color, clarity, and carat for that style earring.
After a bit of searching, Dr. Jung located a number of earring sets that he would consider purchasing. But he knew the pricing of diamonds varied considerably. To assist in his decision making, Dr. Jung decided to use regression analysis to develop a model to predict the retail price of different sets of round-cut earrings based on their color, clarity, and carat scores. He assembled the data in the file Diamonds.xls for this purpose. Use this data to answer the following questions for Dr. Jung.
1) Prepare scatter plots showing the relationship between the earring prices (Y) and each of the potential independent variables. What sort of relationship does each plot suggest?
2) Let X1, X2, and X3 represent diamond color, clarity, and carats, respectively. If Dr. Jung wanted to build a linear regression model to estimate earring prices using these variables, which variables would you recommend that he use? Why?
3) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
4) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
5) Dr. Jung now remembers that it sometimes helps to perform a square root transformation on the dependent variable in a regression problem. Modify your spreadsheet to include a new dependent variable that is the square root on the earring prices (use Excel’s SQRT( ) function). If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
1
6) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
7) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must actually square the model’s estimates to convert them to price estimates.) Which sets of earring appears to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
8) Dr. Jung now also remembers that it sometimes helps to include interaction terms in a regression model—where you create a new independent variable as the product of two of the original variables. Modify your spreadsheet to include three new independent variables, X4, X5, and X6, representing interaction terms where: X4 = X1 × X2, X5 = X1 × X3, and X6 = X2 × X3. There are now six potential independent variables. If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
9) Suppose Dr. Jung decides to use color (X1), carats (X3) and the interaction terms X4 (color * clarity) and X5 (color * carats) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
10) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must square the model’s estimates to convert them to actual price estimates.) Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
asked 2020-10-26
Consider a system of three linear equations in three variables. Give examples of two reduced forms that are not row-equivalent if the system is: a) onsistent and dependent. b) Inconsistent
asked 2020-11-05
Determine whether each statement makes sense or does not make sense, and explain your reasoning. A system of linear equations in three variables, x, y, and z, cannot contain an equation in the form y = mx + b.
asked 2021-02-11

Let B be a \((4\times3)(4\times3)\) matrix in reduced echelon form.

a) If B has three nonzero rows, then determine the form of B.

b) Suppose that a system of 4 linear equations in 2 unknowns has augmented matrix A, where A is a \((4\times3)(4\times3)\) matrix row equivalent to B.

Demonstrate that the system of equations is inconsistent.

asked 2020-10-23

Determine if (1,3) is a solution to the given system of linear equations.

\(5x+y=8\)

\(x+2y=5\)

asked 2021-03-25
Find a general solution to \(\displaystyle{y}{''}+{4}{y}'+{3.75}{y}={109}{\cos{{5}}}{x}\)
To solve this, the first thing I did was find the general solutionto the homogeneous equivalent, and got
\(\displaystyle{c}_{{1}}{e}^{{-{5}\frac{{x}}{{2}}}}+{c}_{{2}}{e}^{{{3}\frac{{x}}{{2}}}}\)
Then i used the form \(\displaystyle{K}{\cos{{\left({w}{x}\right)}}}+{M}{\sin{{\left({w}{x}\right)}}}\) and got \(\displaystyle-{2.72}{\cos{{\left({5}{x}\right)}}}+{2.56}{\sin{{\left({5}{x}\right)}}}\) as a solution of the nonhomogeneous ODE
asked 2020-11-08
The given matrix is the augmented matrix for a system of linear equations. Give the vector form for the general solution.
\(\displaystyle{\left[\begin{matrix}{1}&{0}&-{1}&-{2}\\{0}&{1}&{2}&{3}\end{matrix}\right]}\)
asked 2020-11-06
A small grocer finds that the monthly sales y (in $) can be approximated as a function of the amount spent advertising on the radio \(x_1\)
(in $) and the amount spent advertising in the newspaper \(x_2\) (in $) according to \(y=ax_1+bx_2+c\)
The table gives the amounts spent in advertising and the corresponding monthly sales for 3 months.
\(\begin{array}{|c|c|c|}\hline \text { Advertising, } x_{1} & \text { Advertising, } x_{2} &\text{sales, y} \\ \hline $ 2400 & {$ 800} & {$ 36,000} \\ \hline $ 2000 & {$ 500} & {$ 30,000} \\ \hline $ 3000 & {$ 1000} & {$ 44,000} \\ \hline\end{array}\)
a) Use the data to write a system of linear equations to solve for a, b, and c.
b) Use a graphing utility to find the reduced row-echelon form of the augmented matrix.
c) Write the model \(y=ax_1+bx_2+c\)
d) Predict the monthly sales if the grocer spends $250 advertising on the radio and $500 advertising in the newspaper for a given month.
...