Question

Given a homogeneous system of linear equations, if the system is overdetermined, what are the possibilities as to the number of solutions? Explain.

Forms of linear equations
ANSWERED
asked 2020-10-21
Given a homogeneous system of linear equations, if the system is overdetermined, what are the possibilities as to the number of solutions?
Explain.

Answers (1)

2020-10-22
An overdetermined homogeneous system of linear equations.
Step 2
The homogeneous system of linear equations is said to be overdetermined if the number of equations m is more than the number of unknowns n.
If all the equations are linearly independent and m >n then there is no solution.
Step 3
If the system of equation is consistent, then, in this case, there is either one solution or set of solutions.
If all the equations are not linearly independent and s out of m equations are linearly independent, and if
(i) s>n, then there is no solution.
(ii) If s=n, then the system has either one solution or no solution.
(iii) If s For example:
Consider the homogeneous system of linear equations.
x+y=0, 2x+3y=0, 3x+2y=0
Here the number of equations is m=3 and the number of unknowns n=2.
As m>n, therefore, the system is overdetermined.
x=y=0 satisfy the equations.
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-06-10
Determine whether the given set S is a subspace of the vector space V.
A. V=\(P_5\), and S is the subset of \(P_5\) consisting of those polynomials satisfying p(1)>p(0).
B. \(V=R_3\), and S is the set of vectors \((x_1,x_2,x_3)\) in V satisfying \(x_1-6x_2+x_3=5\).
C. \(V=R^n\), and S is the set of solutions to the homogeneous linear system Ax=0 where A is a fixed m×n matrix.
D. V=\(C^2(I)\), and S is the subset of V consisting of those functions satisfying the differential equation y″−4y′+3y=0.
E. V is the vector space of all real-valued functions defined on the interval [a,b], and S is the subset of V consisting of those functions satisfying f(a)=5.
F. V=\(P_n\), and S is the subset of \(P_n\) consisting of those polynomials satisfying p(0)=0.
G. \(V=M_n(R)\), and S is the subset of all symmetric matrices
asked 2021-05-03
The reduced row echelon form of the augmented matrix of a system of linear equations is given. Tell whether the system has one solution, no solution, or infinitely many solutions. Write the solutions or, if there is no solution, say the system is inconsistent. [1200−4 0010−3 00012 00000]
asked 2021-05-14
Describe the row-echelon form of an augmented matrix that corresponds to a system of linear equations that has an infinite number of solutions.
asked 2021-06-04
Describe the row-echelon form of an augmented matrix that corresponds to a system of linear equations that has an infinite number of solutions.
asked 2021-05-23
The reduced row echelon form of a system of linear equations is given.Write the system of equations corresponding to the given matrix. Use x, y; or x, y, z; or x1,x2,x3,x4 as variables. Determine whether the system is consistent or inconsistent. If it is consistent, give the solution.
asked 2021-06-29
The reduced row echelon form of a system of linear equations is given.Write the system of equations corresponding to the given matrix. Use x, y; or x, y, z; or x1,x2,x3,x4 as variables. Determine whether the system is consistent or inconsistent. If it is consistent, give the solution. ⎡⎣⎢100010010430230⎤⎦⎥ ​
asked 2021-05-05
The reduced row echelon form of a system of linear equations is given. Write the system of equations corresponding to the given matrix. Use x,y;x,y; or x,y,z;x,y,z; or x1,x2,x3,x4 as variables. Determine whether the system is consistent or inconsistent. If it is consistent, give the solution. [1001−40][
asked 2021-06-13
The reduced row echelon form of a system of linear equations is given. Write the system of equations corresponding to the given matrix. Use x, y; or x, y, z; or x1,x2,x3,x4x as variables. Determine whether the system is consistent or inconsistent. If it is consistent, give the solution. ⎡⎣⎢100010000002⎤⎦⎥
asked 2021-06-26
Determine if the statement is true or false, and justify your answer. (a) Different sequence s of row operations can lead to different reduced echelon forms for the same matrix. (b) If a linear system has four equations and seven variables, then it must have infinitely many solutions.
asked 2021-01-02
Given a homogeneous system of linear equations, if the system is overdetermined, what are the possibilities as to the number of solutions?
...