Question

For the given a system of linear equations 4x+y-5z=8 -2x+3y+z=12 3x-y+4z=5 Use matrix inversion to solve simultaneous equations.

Forms of linear equations
ANSWERED
asked 2021-02-19
For the given a system of linear equations
4x+y-5z=8
-2x+3y+z=12
3x-y+4z=5
Use matrix inversion to solve simultaneous equations.

Answers (2)

2021-02-20
image
image
0
 
Best answer
2021-09-08

Given Linear equations

\(4x+y-5z=8\)

\(-2x+3y+z=12\)

\(3x-y+4z=5\)

Now the matrix be 'A'

\(A=\begin{bmatrix}4&1&-5\\-2&3&1\\3&-1&4\end{bmatrix}\)

Let \(A=|A|=4(12+1)-1(-8-3)-5(2-9)\)

\(=52+11+35\)

\(|A|=98\)

raw cofactors are found as

Cofactor of \(4=\begin{bmatrix}3&1\\-1&4\end{bmatrix}=12+1=13\)

Cofactor of \(1=\begin{bmatrix}-2&1\\3&4\end{bmatrix}=-8-3=-11\)

Cofactor of \(-5=\begin{bmatrix}-2&3\\3&-1\end{bmatrix}=2-9=-7\)

Cofactor of \(-2=\begin{bmatrix}1&-5\\-1&4\end{bmatrix}=4-5=-1\)

Cofactor of \(1=\begin{bmatrix}4&1\\3&{-1}\end{bmatrix}=-4-3=-7\)

Cofactor of \(3=\begin{bmatrix}1&-5\\3&1\end{bmatrix}=1+15=16\)

Cofactor of \(1=\begin{bmatrix}4&-5\\-2&1\end{bmatrix}=4-10=-6\)

Cofactor of \(4=\begin{bmatrix}4&1\\-2&3\end{bmatrix}=12+2=14\)

\(\therefore A'=\frac{1}{|A|}adj A=\frac{1}{98}\begin{bmatrix}13&-11&-7\\-1&31&-7\\16&-6&14\end{bmatrix}\)

The system of equation can be written as AX=B

\(\begin{bmatrix}4&1&-5\\-2&3&1\\3&-1&4\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}8\\12\\5\end{bmatrix}\)

\(Ax=B\Rightarrow x=A^{-1}B\)

\(\begin{bmatrix}x\\y\\z\end{bmatrix}=\frac{1}{98}\begin{bmatrix}13&-11&-7\\-1&31&7\\16&-6&14\end{bmatrix}\begin{bmatrix}8\\12\\5\end{bmatrix}\)

\(=\frac{1}{98}\begin{bmatrix}104&-132&-35\\-8&+372&-35\\128&-72&70\end{bmatrix}\)

\(=\frac{1}{98}\begin{bmatrix}-63\\329\\126\end{bmatrix}\)

\(\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}-63/98\\329/98\\129/98\end{bmatrix}\)

0

expert advice

Have a similar question?
We can deal with it in 3 hours
...