Find the product AB of the two matrices listed below:

$A=\left(\begin{array}{ccc}2& 1& 3\\ -2& 2& 4\\ -1& -3& -4\end{array}\right)$

$B=\left(\begin{array}{cc}-1& -2\\ 1& 2\\ 3& 4\end{array}\right)$

Rui Baldwin
2020-11-23
Answered

Find the product AB of the two matrices listed below:

$A=\left(\begin{array}{ccc}2& 1& 3\\ -2& 2& 4\\ -1& -3& -4\end{array}\right)$

$B=\left(\begin{array}{cc}-1& -2\\ 1& 2\\ 3& 4\end{array}\right)$

You can still ask an expert for help

grbavit

Answered 2020-11-24
Author has **109** answers

Step 1

Find the product AB of the two matrices.

Step 2

$AB=\left[\begin{array}{ccc}2& 1& 3\\ -2& 2& 4\\ -1& -3& -4\end{array}\right]\left[\begin{array}{cc}-1& -2\\ 1& 2\\ 3& 4\end{array}\right]$

$=\left[\begin{array}{cc}-2+1+9& -4+2+12\\ 2+2+12& 4+4+16\\ 1-3-12& 2-6-16\end{array}\right]$

$=\left[\begin{array}{cc}8& 10\\ 16& 24\\ -14& -20\end{array}\right]$

Find the product AB of the two matrices.

Step 2

Jeffrey Jordon

Answered 2022-01-27
Author has **2262** answers

Answer is given below (on video)

asked 2021-01-31

Find a basis for the space of $2\times 2$ diagonal matrices.

$\text{Basis}=\{\left[\begin{array}{cc}& \\ & \end{array}\right],\left[\begin{array}{cc}& \\ & \end{array}\right]\}$

asked 2021-02-08

Let B be a 4x4 matrix to which we apply the following operations:

1. double column 1,

2. halve row 3,

3. add row 3 to row 1,

4. interchange columns 1 and 4,

5. subtract row 2 from each of the other rows,

6. replace column 4 by column 3,

7. delete column 1 (column dimension is reduced by 1).

(a) Write the result as a product of eight matrices.

(b) Write it again as a product of ABC (same B) of three matrices.

1. double column 1,

2. halve row 3,

3. add row 3 to row 1,

4. interchange columns 1 and 4,

5. subtract row 2 from each of the other rows,

6. replace column 4 by column 3,

7. delete column 1 (column dimension is reduced by 1).

(a) Write the result as a product of eight matrices.

(b) Write it again as a product of ABC (same B) of three matrices.

asked 2022-01-16

How do I solve this problem: $\underset{z\to 0}{lim}\frac{Re\left({z}^{2}\right)}{z+Im\left(z\right)}$ ?

asked 2022-06-26

Prove that:

$\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{c}\frac{\alpha}{8}+\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{c}\frac{\alpha}{4}+\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{c}\frac{\alpha}{2}=\mathrm{cot}\frac{\alpha}{16}-\mathrm{cot}\frac{\alpha}{2}$

$\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{c}\frac{\alpha}{8}+\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{c}\frac{\alpha}{4}+\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{c}\frac{\alpha}{2}=\mathrm{cot}\frac{\alpha}{16}-\mathrm{cot}\frac{\alpha}{2}$

asked 2022-04-06

I need to compute:

$\mathrm{tan}(\mathrm{arctan}\left(\frac{1}{2}\right)+\mathrm{arctan}\left(\frac{2}{9}\right)+\mathrm{arctan}\left(\frac{1}{8}\right)+\mathrm{arctan}\left(\frac{2}{25}\right)+\mathrm{arctan}\left(\frac{1}{18}\right)+\dots )$

asked 2022-03-30

Prove that ${\int}_{2017}^{2018}(\mathrm{arctan}\left(\mathrm{ln}\left(x\right)\right)-\mathrm{ln}\left(\mathrm{arctan}\left(x\right)\right))dx>0$

asked 2022-06-30

Rewriting $\mathrm{sin}(a+b)=c$