Given linear equations are,

\(x-w=2, y-z+w=3, az=1, y+bw=0\)

Step 2

To find values of a and b.

Given equations are

\(x-w=2...(1)\)

\(y-z+w=3...(2)\)

\(az=1...(3)\)

\(y+bw=0...(4)\)

from equation(3) \(z=1/a\)

from equation(1)\(w=x-2\)

substitute value of z and \(w in (2)\)

\(y-1a+x-2=3\)

\(\Rightarrow ay-1+ax-2a+3a\)

\(\Rightarrow ay-1+ax-5a=0\)

\(\Rightarrow ay+ax-5a=1\)

\(\Rightarrow a(y+x-5)=1\)

\(\Rightarrow a=1/(y+x-5)\)

from equation (4) \(y+bw=0 \Rightarrow y=-bw\)

\(\Rightarrow b=(-y)/w\)

substitute \(w=x-2\ in\ b=(-y)/w\)

\(\Rightarrow b=(-y)/(x-2)\)

Therefore the values of a and b are

\(a=1/(y+x-5),b=(-y)/(x-2)\)