Determine the inverse Laplace transform of the function below. \frac{3}{(2s+7)^4} L^{-1}\{\frac{3}{(2s+7)^4}\}=???

Determine the inverse Laplace transform of the function below.
$$\displaystyle{\frac{{{3}}}{{{\left({2}{s}+{7}\right)}^{{4}}}}}$$
$$\displaystyle{L}^{{-{1}}}{\left\lbrace{\frac{{{3}}}{{{\left({2}{s}+{7}\right)}^{{4}}}}}\right\rbrace}=$$???

Want to know more about Laplace transform?

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

ramirezhereva
$$\displaystyle{L}^{{-{1}}}{\left\lbrace{\frac{{{3}}}{{{\left({2}{s}+{7}\right)}^{{4}}}}}\right\rbrace}={L}^{{-{1}}}{\left\lbrace{\frac{{{3}}}{{{2}^{{4}}{\left({s}+{\frac{{{7}}}{{{2}}}}\right)}^{{4}}}}}\right\rbrace}$$
$$\displaystyle={\frac{{{3}}}{{{2}^{{4}}}}}{L}^{{-{1}}}{\left\lbrace{\frac{{{1}}}{{{\left({s}+{\frac{{{7}}}{{{2}}}}\right)}^{{4}}}}}\right\rbrace}$$
$$\displaystyle={\frac{{{3}}}{{{2}^{{4}}}}}\times{L}^{{-{1}}}{\left\lbrace{\frac{{{1}}}{{{3}!}}}\times{\frac{{{3}!}}{{{\left({s}+{\frac{{{7}}}{{{2}}}}\right)}^{{{3}+{1}}}}}}\right\rbrace}$$
$$\displaystyle={\frac{{{3}}}{{{2}^{{4}}}}}\times{\frac{{{1}}}{{{3}!}}}\times{L}^{{-{1}}}{\left\lbrace{\frac{{{3}!}}{{{\left({s}+{\frac{{{7}}}{{{2}}}}\right)}^{{{3}+{1}}}}}}\right\rbrace}$$
$$\displaystyle={\frac{{{3}}}{{{2}^{{4}}}}}\times{\frac{{{1}}}{{{3}!}}}\times{e}^{{{\frac{{{7}}}{{{2}}}}{t}}}\times{t}^{{3}}$$
$$\displaystyle={\frac{{{3}}}{{{16}\times{3}\times{2}\times{1}}}}\times{e}^{{{\frac{{{7}}}{{{2}}}}{t}}}\times{t}^{{3}}$$
$$\displaystyle{L}^{{-{1}}}{\left\lbrace{\frac{{{3}}}{{{\left({2}{s}+{7}\right)}^{{4}}}}}\right\rbrace}={\frac{{{1}}}{{{32}}}}\times{e}^{{{\frac{{{7}}}{{{2}}}}{t}}}\times{t}^{{3}}$$
Not exactly what youâ€™re looking for?
Bubich13
How did you get to the 16?
nick1337

by taking common 2 from denominator we got denominator as $$2^4=16$$