Question

Is -18/6 irrational, rational, natural, or integer

Rational functions
ANSWERED
asked 2021-02-15
Is \(-18/6\) irrational, rational, natural, or integer

Answers (1)

2021-02-16
Given
\(-18/6\)
Now,
\(-18/6=-3\) which is rational number and also an integer
Therefore, \(-18/6\) is rational and also integer
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-05-03
Consider the following rational functions: \(\displaystyle{r}{\left({x}\right)}=\frac{{{2}{x}-{1}}}{{{x}^{{2}}-{x}-{2}}}\).
\(\displaystyle{s}{\left({x}\right)}=\frac{{{x}^{{3}}+{27}}}{{{x}^{{2}}+{4}}}\)
\(\displaystyle{t}{\left({x}\right)}=\frac{{{x}^{{3}}-{9}{x}}}{{{x}+{2}}}\)
\(\displaystyle{u}{\left({x}\right)}=\frac{{{\left({x}^{{2}}\right)}+{x}-{6}}}{{{x}^{{2}}-{25}}}\)
\(\displaystyle{w}{\left({x}\right)}=\frac{{{x}^{{3}}+{6}{x}^{{2}}+{9}{x}}}{{{x}+{3}}}\)
What are the asymptotes of the function r(x)?
asked 2021-06-07
Consider the following rational functions: \(\displaystyle{r}{\left({x}\right)}=\frac{{{2}{x}-{1}}}{{{x}^{{2}}-{x}-{2}}}\).
\(\displaystyle{s}{\left({x}\right)}=\frac{{{x}^{{3}}+{27}}}{{{x}^{{2}}+{4}}}\)
\(\displaystyle{t}{\left({x}\right)}=\frac{{{x}^{{3}}-{9}{x}}}{{{x}+{2}}}\)
\(\displaystyle{u}{\left({x}\right)}=\frac{{{\left({x}^{{2}}\right)}+{x}-{6}}}{{{x}^{{2}}-{25}}}\)
\(\displaystyle{w}{\left({x}\right)}=\frac{{{x}^{{3}}+{6}{x}^{{2}}+{9}{x}}}{{{x}+{3}}}\)
What are the asymptotes of the function r(x)?
asked 2021-06-13
The process by which we determine limits of rational functions applies equally well to ratios containing noninteger or negative powers of x: Divide numerator and denominator by the highest power of x in the denominator and proceed from there. Find the limits.
\(\displaystyle\lim_{{{x}\rightarrow-\infty}}{\frac{{\sqrt{{{3}}}{\left\lbrace{x}\right\rbrace}-{5}{x}+{3}}}{{{2}{x}+{x}^{{{\frac{{{2}}}{{{3}}}}}}-{4}}}}\)
asked 2021-05-22
The process by which we determine limits of rational functions applies equally well to ratios containing noninteger or negative powers of x: Divide numerator and denominator by the highest power of x in the denominator and proceed from there. Find the limits.
\(\displaystyle\lim_{{{x}\rightarrow-\infty}}{\frac{{\sqrt{{{x}^{{{2}}}+{1}}}}}{{{x}+{1}}}}\)
...