a)population in 2010, \(P_o=3050\)

population in 2015, p=3500

time in years, t=5

use the exponential growth model

\(p=p_o(1+r)^t\)

\(3500=3050(1+r)^5\)

\((70/61)=(1+r)^5\)

\((70/61)^(1/5)=1+r\)

r=1.0279-1

r=0.0279

Therefore the growth rate is 0.0279 or 2.79%

b)for 2018,t=8

\(p=p_o(1+r)^t\)

\(=3050(1+0.0279)^8\)

\(approx3801\)

Therefore, the population is 3801 in 2018

population in 2015, p=3500

time in years, t=5

use the exponential growth model

\(p=p_o(1+r)^t\)

\(3500=3050(1+r)^5\)

\((70/61)=(1+r)^5\)

\((70/61)^(1/5)=1+r\)

r=1.0279-1

r=0.0279

Therefore the growth rate is 0.0279 or 2.79%

b)for 2018,t=8

\(p=p_o(1+r)^t\)

\(=3050(1+0.0279)^8\)

\(approx3801\)

Therefore, the population is 3801 in 2018