Ask question

# How to prove that a normally distributed assumption was fulfilled for the Two-Proportional z-test? Select all relevant assumptions. Residual graphs do not have a pattern Scattered plots are linear Scattered plots do not have a pattern Normal sample distribution: npge5&n(1-p)ge5 Bell-shaped histograms Histograms are uniform Residual graphs are linear Residual graphs are linear box plots have less than two outliers Normal quantile plots do not have a pattern Normal sample distribution: n,p,ge5,n,(1-p)ge5,n_2p_2ge5&91-p_2)ge5 Normal sample distribution: n'sge30 or populations usually are distributed

Question
Scatterplots
asked 2021-02-24
How to prove that a normally distributed assumption was fulfilled for the Two-Proportional z-test?
Select all relevant assumptions.
Residual graphs do not have a pattern
Scattered plots are linear
Scattered plots do not have a pattern
Normal sample distribution: npge5&n(1-p)ge5
Bell-shaped histograms
Histograms are uniform
Residual graphs are linear
Residual graphs are linear box plots have less than two outliers
Normal quantile plots do not have a pattern
Normal sample distribution: n,p,ge5,n,(1-p)ge5,n_2p_2ge5&91-p_2)ge5
Normal sample distribution: n'sge30 or populations usually are distributed

## Answers (1)

2021-02-25
Two proportion z-test assumption is below:
Therefore the appropriate assumptions is:
Scatter plot are linear
Histograms are bell shaped
Normal quantile plots are linear
Residual plots are linear
Normal sampling distribution: all n≥30 or population are normally distributed.

### Relevant Questions

asked 2021-01-17
A new thermostat has been engineered for the frozen food cases in large supermarkets. Both the old and new thermostats hold temperatures at an average of $$25^{\circ}F$$. However, it is hoped that the new thermostat might be more dependable in the sense that it will hold temperatures closer to $$25^{\circ}F$$. One frozen food case was equipped with the new thermostat, and a random sample of 21 temperature readings gave a sample variance of 5.1. Another similar frozen food case was equipped with the old thermostat, and a random sample of 19 temperature readings gave a sample variance of 12.8. Test the claim that the population variance of the old thermostat temperature readings is larger than that for the new thermostat. Use a $$5\%$$ level of significance. How could your test conclusion relate to the question regarding the dependability of the temperature readings? (Let population 1 refer to data from the old thermostat.)
(a) What is the level of significance?
State the null and alternate hypotheses.
$$H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}>?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}\neq?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}?_{2}^{2},H1:?_{1}^{2}=?_{2}^{2}$$
(b) Find the value of the sample F statistic. (Round your answer to two decimal places.)
What are the degrees of freedom?
$$df_{N} = ?$$
$$df_{D} = ?$$
What assumptions are you making about the original distribution?
The populations follow independent normal distributions. We have random samples from each population.The populations follow dependent normal distributions. We have random samples from each population.The populations follow independent normal distributions.The populations follow independent chi-square distributions. We have random samples from each population.
(c) Find or estimate the P-value of the sample test statistic. (Round your answer to four decimal places.)
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?
At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.
(e) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings.Fail to reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings. Fail to reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.Reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.
asked 2020-12-07
Would you rather spend more federal taxes on art? Of a random sample of $$n_{1} = 86$$ politically conservative voters, $$r_{1} = 18$$ responded yes. Another random sample of $$n_{2} = 85$$ politically moderate voters showed that $$r_{2} = 21$$ responded yes. Does this information indicate that the population proportion of conservative voters inclined to spend more federal tax money on funding the arts is less than the proportion of moderate voters so inclined? Use $$\alpha = 0.05.$$ (a) State the null and alternate hypotheses. $$H_0:p_{1} = p_{2}, H_{1}:p_{1} > p_2$$
$$H_0:p_{1} = p_{2}, H_{1}:p_{1} < p_2$$
$$H_0:p_{1} = p_{2}, H_{1}:p_{1} \neq p_2$$
$$H_{0}:p_{1} < p_{2}, H_{1}:p_{1} = p_{2}$$ (b) What sampling distribution will you use? What assumptions are you making? The Student's t. The number of trials is sufficiently large. The standard normal. The number of trials is sufficiently large.The standard normal. We assume the population distributions are approximately normal. The Student's t. We assume the population distributions are approximately normal. (c)What is the value of the sample test statistic? (Test the difference $$p_{1} - p_{2}$$. Do not use rounded values. Round your final answer to two decimal places.) (d) Find (or estimate) the P-value. (Round your answer to four decimal places.) (e) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level alpha? At the $$\alpha = 0.05$$ level, we reject the null hypothesis and conclude the data are statistically significant. At the $$\alpha = 0.05$$ level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the $$\alpha = 0.05$$ level, we fail to reject the null hypothesis and conclude the data are not statistically significant. At the $$\alpha = 0.05$$ level, we reject the null hypothesis and conclude the data are not statistically significant. (f) Interpret your conclusion in the context of the application. Reject the null hypothesis, there is sufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Fail to reject the null hypothesis, there is sufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Fail to reject the null hypothesis, there is insufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Reject the null hypothesis, there is insufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters.
asked 2021-01-27
$$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}&{H}{o}{u}{s}{e}{w}{\quad\text{or}\quad}{k}{H}{o}{u}{r}{s}\backslash{h}{l}\in{e}{G}{e}{n}{d}{e}{r}&{S}{a}\mp\le\ {S}{i}{z}{e}&{M}{e}{a}{n}&{S}{\tan{{d}}}{a}{r}{d}\ {D}{e}{v}{i}{a}{t}{i}{o}{n}\backslash{h}{l}\in{e}{W}{o}{m}{e}{n}&{473473}&{33.133}{.1}&{14.214}{.2}\backslash{h}{l}\in{e}{M}{e}{n}&{488488}&{18.618}{.6}&{15.715}{.7}\backslash{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}$$ a. Based on this​ study, calculate how many more hours per​ week, on the​ average, women spend on housework than men. b. Find the standard error for comparing the means. What factor causes the standard error to be small compared to the sample standard deviations for the two​ groups? The cause the standard error to be small compared to the sample standard deviations for the two groups. c. Calculate the​ 95% confidence interval comparing the population means for women Interpret the result including the relevance of 0 being within the interval or not. The​ 95% confidence interval for ​$$\displaystyle{\left(\mu_{{W}}-\mu_{{M}}​\right)}$$ is: (Round to two decimal places as​ needed.) The values in the​ 95% confidence interval are less than 0, are greater than 0, include 0, which implies that the population mean for women could be the same as is less than is greater than the population mean for men. d. State the assumptions upon which the interval in part c is based. Upon which assumptions below is the interval​ based? Select all that apply. A.The standard deviations of the two populations are approximately equal. B.The population distribution for each group is approximately normal. C.The samples from the two groups are independent. D.The samples from the two groups are random.
asked 2020-12-28
Is statistical inference intuitive to babies? In other words, are babies able to generalize from sample to population? In this study,1 8-month-old infants watched someone draw a sample of five balls from an opaque box. Each sample consisted of four balls of one color (red or white) and one ball of the other color. After observing the sample, the side of the box was lifted so the infants could see all of the balls inside (the population). Some boxes had an “expected” population, with balls in the same color proportions as the sample, while other boxes had an “unexpected” population, with balls in the opposite color proportion from the sample. Babies looked at the unexpected populations for an average of 9.9 seconds (sd = 4.5 seconds) and the expected populations for an average of 7.5 seconds (sd = 4.2 seconds). The sample size in each group was 20, and you may assume the data in each group are reasonably normally distributed. Is this convincing evidence that babies look longer at the unexpected population, suggesting that they make inferences about the population from the sample? Let group 1 and group 2 be the time spent looking at the unexpected and expected populations, respectively. A) Calculate the relevant sample statistic. Enter the exact answer. Sample statistic: _____ B) Calculate the t-statistic. Round your answer to two decimal places. t-statistic = ___________ C) Find the p-value. Round your answer to three decimal places. p-value =
asked 2021-01-31
factor in determining the usefulness of an examination as a measure of demonstrated ability is the amount of spread that occurs in the grades. If the spread or variation of examination scores is very small, it usually means that the examination was either too hard or too easy. However, if the variance of scores is moderately large, then there is a definite difference in scores between "better," "average," and "poorer" students. A group of attorneys in a Midwest state has been given the task of making up this year's bar examination for the state. The examination has 500 total possible points, and from the history of past examinations, it is known that a standard deviation of around 60 points is desirable. Of course, too large or too small a standard deviation is not good. The attorneys want to test their examination to see how good it is. A preliminary version of the examination (with slight modifications to protect the integrity of the real examination) is given to a random sample of 20 newly graduated law students. Their scores give a sample standard deviation of 70 points. Using a 0.01 level of significance, test the claim that the population standard deviation for the new examination is 60 against the claim that the population standard deviation is different from 60.
(a) What is the level of significance?
State the null and alternate hypotheses.
$$H_{0}:\sigma=60,\ H_{1}:\sigma\ <\ 60H_{0}:\sigma\ >\ 60,\ H_{1}:\sigma=60H_{0}:\sigma=60,\ H_{1}:\sigma\ >\ 60H_{0}:\sigma=60,\ H_{1}:\sigma\ \neq\ 60$$
(b) Find the value of the chi-square statistic for the sample. (Round your answer to two decimal places.)
What are the degrees of freedom?
What assumptions are you making about the original distribution?
We assume a binomial population distribution.We assume a exponential population distribution. We assume a normal population distribution.We assume a uniform population distribution.
asked 2020-10-23
1. Find each of the requested values for a population with a mean of $$? = 40$$, and a standard deviation of $$? = 8$$ A. What is the z-score corresponding to $$X = 52?$$ B. What is the X value corresponding to $$z = - 0.50?$$ C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of $$M=42$$ for a sample of $$n = 4$$ scores? E. What is the z-scores corresponding to a sample mean of $$M= 42$$ for a sample of $$n = 6$$ scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: $$a. -2.00 b. 1.25 c. 3.50 d. -0.34$$ 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with $$\mu = 78$$ and $$\sigma = 12$$. Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: $$82, 74, 62, 68, 79, 94, 90, 81, 80$$. 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about $$12 (\mu = 42, \sigma = 12)$$. You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is$44.50 from tips. Test for a difference between this value and the population mean at the $$\alpha = 0.05$$ level of significance.
asked 2020-12-07
Hypothesis Testing Review
For each problem below, simply identify the null and alternative hypotheses. Use appropriate notation/symbols. You do not have to run any hypothesis tests, although it's good practice and I'll post answers for all of them.
1) A simple random sample of 44 men from a normally distributed population results in a standard deviation of 10.7 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.10 significance level to test the claim that pulse rates of men have a standard deviation equal to 10 beats per minute.
2) In 1997, a survey of 880 households showed that 145 of them use e-mail. Use those sample results to test the claim that more than 15% of households use e-mail. Use a 0.05 significance level.
asked 2021-03-05
Hypothesis Testing Review
For each problem below, simply identify the null and alternative hypotheses. Use appropriate notation/symbols. You do not have to run any hypothesis tests, although it's good practice and I'll post answers for all of them.
1) A simple random sample of 44 men from a normally distributed population results in a standard deviation of 10.7 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.10 significance level to test the claim that pulse rates of men have a standard deviation equal to 10 beats per minute.
2) In 1997, a survey of 880 households showed that 145 of them use e-mail. Use those sample results to test the claim that more than 15% of households use e-mail. Use a 0.05 significance level.
asked 2020-10-23
A random sample of $$\displaystyle{n}_{{1}}={16}$$ communities in western Kansas gave the following information for people under 25 years of age.
$$\displaystyle{X}_{{1}}:$$ Rate of hay fever per 1000 population for people under 25
$$\begin{array}{|c|c|} \hline 97 & 91 & 121 & 129 & 94 & 123 & 112 &93\\ \hline 125 & 95 & 125 & 117 & 97 & 122 & 127 & 88 \\ \hline \end{array}$$
A random sample of $$\displaystyle{n}_{{2}}={14}$$ regions in western Kansas gave the following information for people over 50 years old.
$$\displaystyle{X}_{{2}}:$$ Rate of hay fever per 1000 population for people over 50
$$\begin{array}{|c|c|} \hline 94 & 109 & 99 & 95 & 113 & 88 & 110\\ \hline 79 & 115 & 100 & 89 & 114 & 85 & 96\\ \hline \end{array}$$
(i) Use a calculator to calculate $$\displaystyle\overline{{x}}_{{1}},{s}_{{1}},\overline{{x}}_{{2}},{\quad\text{and}\quad}{s}_{{2}}.$$ (Round your answers to two decimal places.)
(ii) Assume that the hay fever rate in each age group has an approximately normal distribution. Do the data indicate that the age group over 50 has a lower rate of hay fever? Use $$\displaystyle\alpha={0.05}.$$
(a) What is the level of significance?
State the null and alternate hypotheses.
$$\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}<\mu_{{2}}$$
$$\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}>\mu_{{2}}$$
$$\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}\ne\mu_{{2}}$$
$$\displaystyle{H}_{{0}}:\mu_{{1}}>\mu_{{2}},{H}_{{1}}:\mu_{{1}}=\mu_{{12}}$$
(b) What sampling distribution will you use? What assumptions are you making?
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations,
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations,
The Student's t. We assume that both population distributions are approximately normal with known standard deviations,
What is the value of the sample test statistic? (Test the difference $$\displaystyle\mu_{{1}}-\mu_{{2}}$$. Round your answer to three decimalplaces.)
What is the value of the sample test statistic? (Test the difference $$\displaystyle\mu_{{1}}-\mu_{{2}}$$. Round your answer to three decimal places.)
(c) Find (or estimate) the P-value.
P-value $$\displaystyle>{0.250}$$
$$\displaystyle{0.125}<{P}-\text{value}<{0},{250}$$
$$\displaystyle{0},{050}<{P}-\text{value}<{0},{125}$$
$$\displaystyle{0},{025}<{P}-\text{value}<{0},{050}$$
$$\displaystyle{0},{005}<{P}-\text{value}<{0},{025}$$
P-value $$\displaystyle<{0.005}$$
Sketch the sampling distribution and show the area corresponding to the P-value.
P.vaiue Pevgiue
P-value f P-value
asked 2020-12-15
Decide which of the following statements are true.
-Normal distributions are bell-shaped, but they do not have to be symmetric.
-The line of symmetry for all normal distributions is x = 0.
-On any normal distribution curve, you can find data values more than 5 standard deviations above the mean.
-The x-axis is a horizontal asymptote for all normal distributions.
...