Question

How to prove that a normally distributed assumption was fulfilled for the Two-Proportional z-test? Select all relevant assumptions. Residual graphs do

Scatterplots
ANSWERED
asked 2021-02-24
How to prove that a normally distributed assumption was fulfilled for the Two-Proportional z-test?
Select all relevant assumptions.
Residual graphs do not have a pattern
Scattered plots are linear
Scattered plots do not have a pattern
Normal sample distribution: npge5&n(1-p)ge5
Bell-shaped histograms
Histograms are uniform
Residual graphs are linear
Residual graphs are linear box plots have less than two outliers
Normal quantile plots do not have a pattern
Normal sample distribution: n,p,ge5,n,(1-p)ge5,n_2p_2ge5&91-p_2)ge5
Normal sample distribution: n'sge30 or populations usually are distributed

Answers (1)

2021-02-25
Two proportion z-test assumption is below:
Therefore the appropriate assumptions is:
Scatter plot are linear
Histograms are bell shaped
Normal quantile plots are linear
Residual plots are linear
Normal sampling distribution: all n≥30 or population are normally distributed.
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-05-22
Which of the following are assumptions for the Significance Test for the Proportion? Data is from a Normal Distribution nphat and n(1-phat) are both greater than 15 Data is Quantitative. Data is from a convenience sample. Data is Categorical. Data is from a random sample. nPo and n(1-Po) are both the greater than 1
asked 2021-01-17
A new thermostat has been engineered for the frozen food cases in large supermarkets. Both the old and new thermostats hold temperatures at an average of \(25^{\circ}F\). However, it is hoped that the new thermostat might be more dependable in the sense that it will hold temperatures closer to \(25^{\circ}F\). One frozen food case was equipped with the new thermostat, and a random sample of 21 temperature readings gave a sample variance of 5.1. Another similar frozen food case was equipped with the old thermostat, and a random sample of 19 temperature readings gave a sample variance of 12.8. Test the claim that the population variance of the old thermostat temperature readings is larger than that for the new thermostat. Use a \(5\%\) level of significance. How could your test conclusion relate to the question regarding the dependability of the temperature readings? (Let population 1 refer to data from the old thermostat.)
(a) What is the level of significance?
State the null and alternate hypotheses.
\(H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}>?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}\neq?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}?_{2}^{2},H1:?_{1}^{2}=?_{2}^{2}\)
(b) Find the value of the sample F statistic. (Round your answer to two decimal places.)
What are the degrees of freedom?
\(df_{N} = ?\)
\(df_{D} = ?\)
What assumptions are you making about the original distribution?
The populations follow independent normal distributions. We have random samples from each population.The populations follow dependent normal distributions. We have random samples from each population.The populations follow independent normal distributions.The populations follow independent chi-square distributions. We have random samples from each population.
(c) Find or estimate the P-value of the sample test statistic. (Round your answer to four decimal places.)
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?
At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.
(e) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings.Fail to reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings. Fail to reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.Reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.
asked 2021-02-13

A population of values has a normal distribution with \(\displaystyle\mu={192.6}\) and \(\displaystyle\sigma={34.4}\). You intend to draw a random sample of size \(\displaystyle{n}={173}\).
Find the probability that a single randomly selected value is less than 186.1.
\(\displaystyle{P}{\left({X}{<}{186.1}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.

asked 2020-11-05

A population of values has a normal distribution with \(\displaystyle\mu={129.7}\) and \(\displaystyle\sigma={7.7}\). You intend to draw a random sample of size \(\displaystyle{n}={10}\).
Find the probability that a single randomly selected value is less than 130.9.
\(\displaystyle{P}{\left({X}{<}{130.9}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.

...