regatamin2
2021-12-13
Answered

How do you simplify $\frac{\mathrm{sec}x}{\mathrm{tan}x}$ ?

You can still ask an expert for help

Bertha Jordan

Answered 2021-12-14
Author has **37** answers

Use $\mathrm{tan}x=\frac{\mathrm{sin}x}{\mathrm{cos}x}$

And$\mathrm{sec}x=\frac{1}{\mathrm{cos}x}$

So,$\frac{\mathrm{sec}x}{\mathrm{tan}x}=\frac{1}{\mathrm{cos}x}\cdot \frac{\mathrm{cos}x}{\mathrm{sin}x}=\frac{1}{\mathrm{sin}x}=\mathrm{csc}x$

And

So,

Navreaiw

Answered 2021-12-15
Author has **34** answers

Let's use the definitions of $\mathrm{sec}x$ and $\mathrm{tan}x$ to simplify this. We know

$\mathrm{sec}x=\frac{1}{\mathrm{cos}x}$ and $\mathrm{tan}x=\frac{\mathrm{sin}x}{\mathrm{cos}x}$ . Let's plug these values into our original expression. we get

$\frac{\frac{1}{\mathrm{cos}x}}{\frac{\mathrm{sin}x}{\mathrm{cos}x}}=\frac{1}{\mathrm{sin}x}\Rightarrow \mathrm{csc}x$

Therefore,$\frac{\mathrm{sec}x}{\mathrm{tan}x}=\mathrm{csc}x$

Hope this helps!

Therefore,

Hope this helps!

asked 2022-02-08

Let

Show

asked 2021-09-07

asked 2021-09-16

Write the trigonometric expression as an algebraic expression. $\mathrm{cos}(\mathrm{arcsin}x-\mathrm{arctan}2x)$

asked 2021-12-31

How do you evaluate $\mathrm{tan}\left(\frac{\pi}{6}\right)$ ?

asked 2021-09-05

If $y=3\sqrt{x}+\frac{1}{\sqrt{x}}$ , find the differential dy.

asked 2021-12-12

Prove that cos(0)=1

asked 2021-09-12

Select the point on the terminal side of 0.

$0=-60\xb0$

(a)$(-1,-1)$

(b)$(1,-\surd 3)$

(c)$(-\surd 3,1)$

(a)

(b)

(c)