# Let the universal set the set of R of all real numbers and Let A={x in R|-1<x underset(-)(<)0} & B={x in R|0underset(-)(<)X<1} a:find A cup B b:Find A cap B c:Find A^c

Question
Discrete math
Let the universal set the set of R of all real numbers and
Let $$A={x in R|-1 a:find \(A cup B$$
b:Find $$A cap B$$
c:Find $$A^c$$

2020-11-04
Step 1:
It is given that universal set is R, $$A={xinR|-1 and \(B={xinR|0underset(-)(<)x<1}$$</span>
a.Obtain the set $$A cup B$$ as follows:
$$A cup B={xinR|-1 \(={xinR|-1 Step 2: b: Obtain the set \(A cap B$$ as follows
$$AcapB={xinR|-1 \(={xinR|x=0}$$
={0}c.Obrain the set $$A^c$$ as follows:
$$A^c=(R\A)$$
$$=R\{xinR|-1 \(=(-oo,-1]cup(0,oo)$$

### Relevant Questions

Find all zeros of p(x), real or imaginary. $$p(x) = x^{4} + 6x^{3} + 6x^{2} -18x -27$$ List all of the possible rational zeros according to the rational zero theorem and state the values for C, A, B and D in the following partial factorization of $$p(x) = (x-c)(x^{3}+Ax^{2}+Bx+D)$$ State the exact answer and a decimal approximation of each zero to the tenths place
Let $$\displaystyle{A}_{{{2}}}{A}_{{{2}}}$$ be the set of all multiples of 2 except for 2.2. Let $$\displaystyle{A}_{{{3}}}{A}_{{{3}}}$$ be the set of all multiples of 3 except for 3. And so on, so that $$\displaystyle{A}_{{{n}}}{A}_{{{n}}}$$ is the set of all multiples of nn except for n,n, for any $$\displaystyle{n}\geq{2}.{n}\geq{2}$$. Describe (in words) the set $$\displaystyle{A}_{{{2}}}\cup{A}_{{{3}}}\cup{A}_{{{4}}}\cup\ldots$$
Im confused on this question for Discrete Mathematics.
Let $$\displaystyle{A}_{{{2}}}$$ be the set of all multiples of 2 except for 2. Let $$\displaystyle{A}_{{{3}}}$$ be the set of all multiples of 3 except for 3. And so on, so that $$\displaystyle{A}_{{{n}}}$$ is the set of all multiples of n except for n, for any $$\displaystyle{n}\geq{2}$$. Describe (in words) the set $$\displaystyle{A}_{{{2}}}\cup{A}_{{{3}}}\cup{A}_{{{4}}}\cup\ldots$$.

Let M be the vector space of $$2 \times 2$$ real-valued matrices.
$$M=\begin{bmatrix}a & b \\c & d \end{bmatrix}$$
and define $$M^{\#}=\begin{bmatrix}d & b \\c & a \end{bmatrix}$$ Characterize the matrices M such that $$M^{\#}=M^{-1}$$

The bulk density of soil is defined as the mass of dry solidsper unit bulk volume. A high bulk density implies a compact soilwith few pores. Bulk density is an important factor in influencing root development, seedling emergence, and aeration. Let X denotethe bulk density of Pima clay loam. Studies show that X is normally distributed with $$\displaystyle\mu={1.5}$$ and $$\displaystyle\sigma={0.2}\frac{{g}}{{c}}{m}^{{3}}$$.
(a) What is thedensity for X? Sketch a graph of the density function. Indicate onthis graph the probability that X lies between 1.1 and 1.9. Findthis probability.
(b) Find the probability that arandomly selected sample of Pima clay loam will have bulk densityless than $$\displaystyle{0.9}\frac{{g}}{{c}}{m}^{{3}}$$.
(c) Would you be surprised if a randomly selected sample of this type of soil has a bulkdensity in excess of $$\displaystyle{2.0}\frac{{g}}{{c}}{m}^{{3}}$$? Explain, based on theprobability of this occurring.
(d) What point has the property that only 10% of the soil samples have bulk density this high orhigher?
(e) What is the moment generating function for X?
The unstable nucleus uranium-236 can be regarded as auniformly charged sphere of charge Q=+92e and radius $$\displaystyle{R}={7.4}\times{10}^{{-{15}}}$$ m. In nuclear fission, this can divide into twosmaller nuclei, each of 1/2 the charge and 1/2 the voume of theoriginal uranium-236 nucleus. This is one of the reactionsthat occurred n the nuclear weapon that exploded over Hiroshima, Japan in August 1945.
A. Find the radii of the two "daughter" nuclei of charge+46e.
B. In a simple model for the fission process, immediatelyafter the uranium-236 nucleus has undergone fission the "daughter"nuclei are at rest and just touching. Calculate the kineticenergy that each of the "daughter" nuclei will have when they arevery far apart.
C. In this model the sum of the kinetic energies of the two"daughter" nuclei is the energy released by the fission of oneuranium-236 nucleus. Calculate the energy released by thefission of 10.0 kg of uranium-236. The atomic mass ofuranium-236 is 236 u, where 1 u = 1 atomic mass unit $$\displaystyle={1.66}\times{10}^{{-{27}}}$$ kg. Express your answer both in joules and in kilotonsof TNT (1 kiloton of TNT releases 4.18 x 10^12 J when itexplodes).

Let $$A = (1, 1, 1, 0), B = (-1, 0, 1, 1,), C = (3, 2, -1, 1)$$
and let $$D = \{Q \in R^{4} | Q \perp A, Q \perp B, Q \perp C\}$$.
Convince me that D is a subspace of $$R^4$$. Write D as span of a basis. Write D as a span of an orthogonal basis

Using cardinatility of sets in discrete mathematics the value of N is real numbers Currently using elements of discrete mathematics by Richard Hammack chapter 18 Let A be a collection of sets such that X in A if and only if $$X \supset N\ \text{and} |X| = n$$ for some n in N. Prove that $$|A| = |N|$$.
Five distinct numbers are randomly distributed to players numbered 1 through 5. Whenever two players compare their numbers, the one with the higher one is declared the winner. Initially, players 1 and 2 compare their numbers; the winner then compares with player 3, and so on. Let X denoted the number of times player 1 is a winner. Find P{X = i}, i = 0,1,2,3,4.

A random sample of $$n_1 = 14$$ winter days in Denver gave a sample mean pollution index $$x_1 = 43$$.
Previous studies show that $$\sigma_1 = 19$$.
For Englewood (a suburb of Denver), a random sample of $$n_2 = 12$$ winter days gave a sample mean pollution index of $$x_2 = 37$$.
Previous studies show that $$\sigma_2 = 13$$.
Assume the pollution index is normally distributed in both Englewood and Denver.
(a) State the null and alternate hypotheses.
$$H_0:\mu_1=\mu_2.\mu_1>\mu_2$$
$$H_0:\mu_1<\mu_2.\mu_1=\mu_2$$
$$H_0:\mu_1=\mu_2.\mu_1<\mu_2$$
$$H_0:\mu_1=\mu_2.\mu_1\neq\mu_2$$
(b) What sampling distribution will you use? What assumptions are you making? NKS The Student's t. We assume that both population distributions are approximately normal with known standard deviations.
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations.
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations.
(c) What is the value of the sample test statistic? Compute the corresponding z or t value as appropriate.
(Test the difference $$\mu_1 - \mu_2$$. Round your answer to two decimal places.) NKS (d) Find (or estimate) the P-value. (Round your answer to four decimal places.)
(e) Based on your answers in parts (i)−(iii), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level \alpha?
At the $$\alpha = 0.01$$ level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
At the $$\alpha = 0.01$$ level, we reject the null hypothesis and conclude the data are statistically significant.
At the $$\alpha = 0.01$$ level, we fail to reject the null hypothesis and conclude the data are statistically significant.
At the $$\alpha = 0.01$$ level, we reject the null hypothesis and conclude the data are not statistically significant.
(f) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver. (g) Find a 99% confidence interval for
$$\mu_1 - \mu_2$$.