# Write the vector v in the form ai + bj, given its magnitude ∥v∥∥v∥ and the angle alpha it makes with the positive x-axis. ∥v∥=8,alpha=45*∥v∥=8,alpha=45

Question
Vectors and spaces
Write the vector v in the form ai + bj, given its magnitude ∥v∥∥v∥ and the angle $$alpha$$ it makes with the positive x-axis. $$∥v∥=8,alpha=45*∥v∥=8,alpha=45$$

2021-01-03
||v||=8 & $$a+45^(circ)=>a=8cos45^(circ)=8*sqrt(2/2)$$
$$=4sqrt(2)$$ &
$$b= 8sin45^(circ)=8*sqrt(2)/2=4sqrt2=>$$
$$v=4sqrt(2i)+4sqrt(2j)$$

### Relevant Questions

Find the distance UV between the points U(7,−4) and V(−3,−6). Round your answer to the nearest tenth, if neces
To monitor the breathing of a hospital patient, a thin belt isgirded around the patient's chest. The belt is a200-turn coil. When the patient inhales, the area encircled by the coil increases by $$\displaystyle{39.0}{c}{m}^{{2}}$$. The magnitude of the Earth's magnetic field is 50.0uT and makes an angle of 28.0 degree with the plane of the coil. Assuming a patien takes 1.80s toin hale, find the magnitude of the average induced emf in the coilduring that time.
Do I use the equation $$\displaystyle{E}={N}\cdot{A}\cdot{B}{w}{\sin{{w}}}{t}$$?
The person weighs 170 lb. Each crutch makes an angle of 22.0 with the vertical. Half of the person's weight is supported by the cruches, the other half by the vertical forces exerted by the roundon his feet. Assuming that he is at rest and that the force exerted by the ground on the crutches acts along the crutches,determine
a) the smallest possible coefficient of friction between crutches and ground and
b) the magnitude of the compression force supported by each crutch.
Determine whether the following function is a polynomial function. If the function is a polynomial​ function, state its degree. If it is​ not, tell why not. Write the polynomial in standard form. Then identify the leading term and the constant term.
$$g(x)=3-\frac{x^{2}}{4}$$
Determine whether $$F(x)=5x^{4}-\pi x^{3}+\frac{1}{2}$$ is a polynomial. If it is, state its degree. If not, say why it is not a polynomial. If it is a polynomial, write it in standard form. Identify the leading term and the constant term.
Determine whether $$g(x)=\frac{x^{3}}{2} -x^{2}+2$$ is a polynomial. If it is, state its degree. If not, say why it is not a polynomial. If it is a polynomial, write it in standard form. Identify the leading term and the constant term.
The dominant form of drag experienced by vehicles (bikes, cars,planes, etc.) at operating speeds is called form drag. Itincreases quadratically with velocity (essentially because theamount of air you run into increase with v and so does the amount of force you must exert on each small volume of air). Thus
$$\displaystyle{F}_{{{d}{r}{u}{g}}}={C}_{{d}}{A}{v}^{{2}}$$
where A is the cross-sectional area of the vehicle and $$\displaystyle{C}_{{d}}$$ is called the coefficient of drag.
Part A:
Consider a vehicle moving with constant velocity $$\displaystyle\vec{{{v}}}$$. Find the power dissipated by form drag.
Express your answer in terms of $$\displaystyle{C}_{{d}},{A},$$ and speed v.
Part B:
A certain car has an engine that provides a maximum power $$\displaystyle{P}_{{0}}$$. Suppose that the maximum speed of thee car, $$\displaystyle{v}_{{0}}$$, is limited by a drag force proportional to the square of the speed (as in the previous part). The car engine is now modified, so that the new power $$\displaystyle{P}_{{1}}$$ is 10 percent greater than the original power ($$\displaystyle{P}_{{1}}={110}\%{P}_{{0}}$$).
Assume the following:
The top speed is limited by air drag.
The magnitude of the force of air drag at these speeds is proportional to the square of the speed.
By what percentage, $$\displaystyle{\frac{{{v}_{{1}}-{v}_{{0}}}}{{{v}_{{0}}}}}$$, is the top speed of the car increased?
Express the percent increase in top speed numerically to two significant figures.