Using Maclaurin series, determine to exactly what value the following series converges:

$\sum _{n=0}^{\mathrm{\infty}}\frac{(\mathrm{ln}5{)}^{n}}{n!}$

CheemnCatelvew
2021-01-04
Answered

Using Maclaurin series, determine to exactly what value the following series converges:

$\sum _{n=0}^{\mathrm{\infty}}\frac{(\mathrm{ln}5{)}^{n}}{n!}$

You can still ask an expert for help

asked 2022-02-22

Find:

$\sum _{k=1}^{\mathrm{\infty}}\frac{{6}^{k}}{({3}^{k+1}-{2}^{k+1})({3}^{k}-{2}^{k})}$

asked 2022-06-08

Does $\sum _{n=2}^{\mathrm{\infty}}\frac{(-1{)}^{n}}{\mathrm{ln}(n)}$ have a closed form?

asked 2022-02-27

Study the behaviour of

$\sum _{n=1}^{\mathrm{\infty}}\frac{n+\mathrm{log}\left(n\right)}{{(n+\mathrm{cos}\left(n\right))}^{3}}$

asked 2022-01-22

I want to speed up the convergence of a series involving rational expressions the expression is

$\sum _{x=1}^{\mathrm{\infty}}{(-1)}^{x}\frac{-{x}^{2}-2x+1}{{x}^{4}+2{x}^{2}+1}$

asked 2022-06-29

How can I find the limit of

${u}_{n}=\mathrm{sin}\left(\frac{1}{n+1}\right)+\cdots +\mathrm{sin}\left(\frac{1}{2n}\right)$

${u}_{n}=\mathrm{sin}\left(\frac{1}{n+1}\right)+\cdots +\mathrm{sin}\left(\frac{1}{2n}\right)$

asked 2022-06-27

I ran across a cool series I have been trying to chip away at.

$\sum _{k=1}^{\mathrm{\infty}}\frac{\zeta (2k+1)-1}{k+2}=\frac{-\gamma}{2}-6\mathrm{ln}(A)+\mathrm{ln}(2)+\frac{7}{6}\approx 0.0786\dots $

$\sum _{k=1}^{\mathrm{\infty}}\frac{\zeta (2k+1)-1}{k+2}=\frac{-\gamma}{2}-6\mathrm{ln}(A)+\mathrm{ln}(2)+\frac{7}{6}\approx 0.0786\dots $

asked 2022-05-17

Evaluating $\sum _{n=0}^{\mathrm{\infty}}\frac{(1/2{)}_{n}}{n!}({H}_{n}-{H}_{n-1/2})$