# INVESTMENT ANALYSIS Paul Hunt is considering two business ventures. Th

INVESTMENT ANALYSIS Paul Hunt is considering two business ventures. The anticipated returns (in thousands of dollars) of each venture are described by the following probability distributions:
$\begin{array}{cc} Venture \ A & \\ \hline Earnings & Probability \\ \hline -20 & 3 \\ \hline 50 & 4 \\\hline 50 & 3 \\ \hline \end{array}$
$\begin{array}{cc} Venture \ B & \\ \hline Earnings & Probability \\ \hline -15 & 2 \\ \hline 30 & 5 \\\hline 40 & 3 \\ \hline \end{array}$
a. Compute the mean and variance for each venture.
b. Which investment would provide Paul with the higher expected return (the greater mean)?
c. In which investment would the element of risk be less (that is, which probability distribution has the smaller variance)?

• Questions are typically answered in as fast as 30 minutes

### Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Bertha Jordan
Given
Venture A
$\begin{array}{|c|c|}\hline Earnings & Probability \\ \hline -20 & 0.3 \\ \hline 40 & 0.4 \\ \hline 50 & 0.3 \\ \hline \end{array}$
Venture B
$\begin{array}{|c|c|}\hline Earnings & Probability \\ \hline -15 & 0.2 \\ \hline 30 & 05 \\ \hline 40 & 0.3 \\ \hline \end{array}$
For Venture A
Mean $$\displaystyle{\left({E}{\left({x}\right)}\right)}=\sum{X}.{P}{\left({x}\right)}$$
$$\displaystyle{E}{\left({x}\right)}={\left(-{20}\times{0.3}\right)}+{\left({40}\times{0.4}\right)}+{\left({50}\times{0.3}\right)}$$
$$\displaystyle{E}{\left({x}\right)}=-{6}+{16}+{15}$$
$$\displaystyle{E}{\left({x}\right)}={25}$$
$$\displaystyleΕ{\left({x}^{{{2}}}\right)}=\sum{x}^{{{2}}}.{P}{\left({x}\right)}$$
$$\displaystyle{E}{\left({x}^{{{2}}}\right)}={\left(-{20}^{{{2}}}\times{0.3}\right)}+{\left({40}^{{{2}}}\times{0.4}\right)}+{\left({50}^{{{2}}}\times{0.3}\right)}$$
$$\displaystyle{E}{\left({x}^{{{2}}}\right)}={120}+{640}+{750}$$
$$\displaystyle{E}{\left({x}^{{{2}}}\right)}={1510}$$
Variance $$\displaystyle{\left({V}{\left({x}\right)}\right)}={E}{\left({x}^{{{2}}}\right)}–{\left({E}{\left({x}\right)}\right)}^{{{2}}}$$
$$\displaystyle{V}{\left({x}\right)}={1510}-{\left({25}\right)}^{{{2}}}$$
V(x)=1510-625
V(x)=885
For Venture B
Mean $$\displaystyle{\left({E}{\left({x}\right)}\right)}=\sum{X}.{P}{\left({x}\right)}$$
$$\displaystyle{E}{\left({x}\right)}={\left(-{15}\times{0.2}\right)}+{\left({30}\times{0.5}\right)}+{\left({40}\times{0.3}\right)}$$
$$\displaystyle{E}{\left({x}\right)}=-{3}+{15}+{12}$$
$$\displaystyle{E}{\left({x}\right)}={24}$$
$$\displaystyle{E}{\left({x}^{{{2}}}\right)}=\sum{x}^{{{2}}}.{P}{\left({x}\right)}$$
$$\displaystyle{E}{\left({x}^{{{2}}}\right)}={\left(-{15}^{{{2}}}\times{0.3}\right)}+{\left({30}^{{{2}}}\times{0.4}\right)}+{\left({40}^{{{2}}}\times{0.3}\right)}$$
$$\displaystyle{E}{\left({x}^{{{2}}}\right)}={45}+{360}+{480}$$
$$\displaystyle{E}{\left({x}^{{{2}}}\right)}={885}$$
Variance $$\displaystyle{\left({V}{\left({x}\right)}\right)}={E}{\left({x}^{{{2}}}\right)}–{\left({E}{\left({x}\right)}\right)}^{{{2}}}$$
$$\displaystyle{V}{\left({x}\right)}={885}-{\left({24}\right)}^{{{2}}}$$
$$\displaystyle{V}{\left({x}\right)}={885}-{576}$$
$$\displaystyle{V}{\left({x}\right)}={309}$$
###### Not exactly what you’re looking for?
zurilomk4
b)
Venture A investment would provide Paul with the higher expected return