# Evaluate this laplace transform of PSK\frac{1-e^{-t}}{t}ZSK and the integral exists

Evaluate this laplace transform of $$\displaystyle{\frac{{{1}-{e}^{{-{t}}}}}{{{t}}}}$$ and the integral exists according to wolfram

## Want to know more about Laplace transform?

• Questions are typically answered in as fast as 30 minutes

### Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Mary Goodson

Write
$$I(s)=\int_0^{\infty} \frac{1-e^{-t}}{t}e^{-st}dt$$
for Re s>0. Compute I′(s) (by differentiating under the integral sign), and from that obtain I(s) by noting that $$\displaystyle\lim_{{{R}{e}{s}\Rightarrow+\infty}}{I}{\left({s}\right)}={0}$$ by the dominated convergence theorem.
$$\displaystyle{I}{\left({s}\right)}={\log{{\left({1}+{\frac{{{1}}}{{{s}}}}\right)}}}$$
I am getting
$$\displaystyle{I}'{\left({s}\right)}=-{\frac{{{1}}}{{{s}+{1}}}}$$
integrating both sides gives
$$\displaystyle{I}{\left({s}\right)}={\ln{{\left({\frac{{{1}}}{{{s}+{1}}}}\right)}}}$$
You don't get a factor of s down by differentiating.
$$\displaystyle{\frac{{\partial}}{{\partial{s}}}}{e}^{{-{s}{t}}}=-{t}\cdot{e}^{{-{s}{t}}}$$
so it`s
$$I'(s)=\int_0^{\infty} (e^{-t}-1) \cdot e^{-st} dt$$

###### Not exactly what youâ€™re looking for?
Lindsey Gamble
Use the fact that
$$\displaystyle{\frac{{{1}-{e}^{{-{t}}}}}{{{t}}}}={\int_{{0}}^{{{1}}}}{d}{u}{e}^{{-{t}{u}}}$$
So the integral in question is
$$\displaystyle{\int_{{0}}^{{\infty}}}{\left.{d}{t}\right.}{\int_{{0}}^{{1}}}{d}{u}{e}^{{-{t}{\left({u}+{s}\right)}}}$$
Because all integrals here converge absolutely, we may switch the order of integration and get
$$\displaystyle{\int_{{0}}^{{1}}}{d}{u}{\int_{{0}}^{{\infty}}}{\left.{d}{t}\right.}{e}^{{-{t}{\left({u}+{s}\right)}}}={\int_{{0}}^{{1}}}{\frac{{{d}{u}}}{{{u}+{s}}}}={\log{{\left({1}+{\frac{{{1}}}{{{s}}}}\right)}}}$$