Question

Find the limit: lim_{nrightarrowinfty}(frac{1}{n+1}+frac{1}{n+2}+...+frac{1}{2n})

Limits and continuity
ANSWERED
asked 2020-10-27
Find the limit:
\(\lim_{n\rightarrow\infty}(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n})\)

Answers (1)

2020-10-28
Consider the given limit,
\(\lim_{n\rightarrow\infty}(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n})\)
now write the limit in the summation form,
\(\lim_{n\rightarrow\infty}(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n})=\lim_{n\rightarrow\infty}\sum_{r=1}^n(\frac{1}{n+r})\)
\(=\lim_{n\rightarrow\infty}\sum_{r=1}^n\frac{1}{n}\cdot(\frac{1}{1+\frac{r}{n}})\)
now, convert it into definite integral as follows,
substitute \(\frac{r}{n}=x\Rightarrow dx=\frac{1}{n}\)
so the limits of integration will be
\(r\rightarrow1,x\rightarrow0\)
\(r\rightarrow n,x\rightarrow1\)
so,
\(\lim_{n\rightarrow\infty}\sum_{r=1}^n\frac{1}{n}\cdot(\frac{1}{1+\frac{r}{n}})=\int_0^1\frac{1}{1+x}dx\)
\(=[\ln(1+x)]_0^1\)
\(=(\ln(2)-\ln(1))\)
\(=\ln(2)\)
hence the value of the limit will be ln(2).
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-05-28
Verify, using the definition of convergence of a sequence, that the following sequences converge to the proposed limit.
a) \(\lim \frac{2n+1}{5n+4}=\frac{2}{5}\)
b) \(\lim \frac{2n^3}{n^3+3}=0\)
c) \(\lim \frac{\sin (n^2)}{\sqrt[3]{n}}\)
asked 2021-05-16
Find the limit (if it exists) and discuss the continuity of the function. \(\displaystyle\lim_{{{\left({x},{y}\right)}→{\left({0},{0}\right)}}}{\frac{{{y}+{x}{e}^{{-{y}²}}}}{{{1}+{x}²}}}\)
asked 2021-05-01
Find the limit and discuss the continuity of the function. \(\displaystyle\lim_{{{x},{y}}}→{\left({0},{1}\right)}\frac{{\arccos{{\left(\frac{{x}}{{y}}\right)}}}}{{1}}+{x}{y}\)
asked 2021-06-28
Find the limit (if it exists) and discuss the continuity of the function. \(\displaystyle\lim_{{{x},{y}}}\rightarrow{\left({1},{1}\right)}{\frac{{{x}{y}}}{{{x}²+{y}²}}}\)
asked 2021-05-31
Find the limit and discuss the continuity of the function. \(\displaystyle\lim_{{{x},{y}}}\rightarrow{\left(-{1},{2}\right)}{\frac{{{\left({x}+{y}\right)}}}{{{\left({x}-{y}\right)}}}}\)
asked 2021-05-27
a) Using limit rules each of the following limits
\(\lim_{x\rightarrow0}\frac{x+1}{x}\)
\(\lim_{x\rightarrow0}\frac{x+1}{x^{2}}\)
\(\lim_{x\rightarrow0}\frac{x}{x+1}\)
\(\lim_{x\rightarrow0}\frac{x+1}{x+2}\)
b) Using limit rules evaluate \(\lim_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}\)
asked 2021-06-26
Find the limit and discuss the continuity of the function. \(\displaystyle\lim_{{{x},{y}}}\rightarrow{\left({\frac{{\pi}}{{{4}}}},{2}\right)}{y}{\cos{{x}}}{y}\)
asked 2021-06-04
Find the limit and discuss the continuity of the function. \(\displaystyle\lim_{{{x},{y}}}\rightarrow{\left({2}\pi,{4}\right)}{\sin{{\frac{{{x}}}{{{y}}}}}}\)
asked 2020-11-10
Find the following limit.
\(\lim_{n\rightarrow\infty}\frac{2n^2+2}{5n^3-3n-1}\)
asked 2021-05-22
Find the limit and discuss the continuity of the function. \(\displaystyle\lim_{{{x},{y},{z}}}\rightarrow{\left({1},{3},{4}\right)}\sqrt{{{\left({x}+{y}+{z}\right)}}}\)
...