# Find the following limit: lim_{xrightarrow0}frac{xe^x}{e^{3x}-1}

Question
Limits and continuity
Find the following limit:
$$\lim_{x\rightarrow0}\frac{xe^x}{e^{3x}-1}$$

2021-03-05
Given:
$$\lim_{x\rightarrow0}\frac{xe^x}{e^{3x}-1}$$
Now Applying limits:
$$\lim_{x\rightarrow0}\frac{xe^x}{e^{3x}-1}=\frac{0(e^0)}{e^{3(0)}-1}=\frac{0}{0}$$
Hence it gives indeterminate form $$\frac{0}{0}$$
Now by L-Hospital Rule:
$$\lim_{x\rightarrow0}[\frac{\frac{d}{dx}(xe^x)}{\frac{d}{dx}(e^{3x}-1)}]=\lim_{x\rightarrow0}[\frac{xe^x+e^x}{3e^{3x}}]$$
$$=[\frac{0(e^0)+e^0}{3e^{3(0)}}]$$
$$[=\frac{1}{3}]$$
Hence,
$$\lim_{x\rightarrow0}\frac{xe^x}{e^{3x}-1}=\frac{1}{3}$$

### Relevant Questions

Evaluate the following limit.
$$\lim_{x\rightarrow0}\frac{\sin ax-\tan^{-1}ax}{bx^3}$$
Use Taylor series to evaluate the following limits. Express the result in terms of the nonzero real parameter(s).
$$\lim_{x\rightarrow0}\frac{e^{ax}-1}{x}$$
Find the limit
$$\lim_{x\rightarrow0}\frac{x\sin x}{2-2\cos x}$$
Find the limit.
$$\lim_{x\rightarrow0^+}\frac{\sqrt x}{\sqrt{\sin x}}$$
Evaluate the following limit.
$$\lim_{x\rightarrow0^+}(1+5x)^{2/x}$$
$$\lim_{x\rightarrow+\infty}(\frac{3-12x}{3x+5}+\csc\frac{\pi x+\pi}{4x})$$
$$\lim_{x\rightarrow0}\sec[e^x+\pi\tan(\frac{\pi}{4\sec x})-1]$$
Suppose the functions f(x) and g(x) are defined for all x and that $$\lim_{x\rightarrow0}f(x)=\frac{1}{2}$$ and $$\lim_{x\rightarrow0}g(x)=\sqrt2$$. Find the limits as $$x\rightarrow0$$ of the following functions. $$f(x)\frac{\cos x}{x-1}$$
$$\lim_{x\rightarrow\infty}\frac{e^{x^2}}{xe^x}$$
Find the limits. Write $$\infty$$ or $$-\infty$$ where appropriate. $$\lim_{x\rightarrow0^-}\frac{x^2-3x+2}{x^3-4x}$$