Question

Find the limits. lim_{xrightarrow-infty}frac{2^x+4^x}{5^x-2^x}

Limits and continuity
ANSWERED
asked 2020-12-21
Find the limits.
\(\lim_{x\rightarrow-\infty}\frac{2^x+4^x}{5^x-2^x}\)

Expert Answers (1)

2020-12-22
Consider the limit
\(\lim_{x\rightarrow-\infty}\frac{2^x+4^x}{5^x-2^x}\)
Solve:
\(\lim_{x\rightarrow-\infty}\frac{2^x+4^x}{5^x-2^x}\)
Take \(2^x\) common from numerator and denominator
\(=\lim_{x\rightarrow-\infty}\frac{2^x(1+\frac{4^x}{2^x})}{2^x(\frac{5^x}{2^x}-1)}\)
\(=\lim_{x\rightarrow-\infty}\frac{2^x(1+(\frac{4}{2})^x)}{2^x((\frac{5}{2})^x-1)}\)
\(=\lim_{x\rightarrow-\infty}\frac{(1+2^x)}{((2.5)^x-1)}\)
\(=\frac{\lim_{x\rightarrow-\infty}(1+2^x)}{\lim_{x\rightarrow-\infty}((2.5)^x-1)}\)
\(=\frac{(1+2^{-\infty})}{(2.5^{-\infty}-1)}\)
\(=\frac{(1+0)}{(0-1)}\)
\(=-1\)
Answer: -1
16
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours
...