Use the method of your choice to evaluate the following limits. lim_{(x,y)rightarrow(2,0)}frac{1-cos y}{xy^2}

Use the method of your choice to evaluate the following limits. lim_{(x,y)rightarrow(2,0)}frac{1-cos y}{xy^2}

Question
Limits and continuity
asked 2021-03-06
Use the method of your choice to evaluate the following limits.
\(\lim_{(x,y)\rightarrow(2,0)}\frac{1-\cos y}{xy^2}\)

Answers (1)

2021-03-07
Given:
\(\lim_{(x,y)\rightarrow(2,0)}\frac{1-\cos y}{xy^2}\)
we will choose y=mx when \(y\rightarrow0\ then\ x\rightarrow0.\).
\(\lim_{(x,y)\rightarrow(2,0)}\frac{1-\cos y}{xy^2}\)
\(=\lim_{x\rightarrow0}\frac{1-\cos(mx)}{x(mx)^2}\)
\(=\lim_{x\rightarrow0}\frac{m\sin mx}{3m^2x^2}\)
\(=\lim_{x\rightarrow0}\frac{m\cos mx}{6mx}\)
\(=\lim_{x\rightarrow0}\frac{-m\sin mx}{6}\)
\(=0\)
0

Relevant Questions

asked 2020-11-27
Use the method of your choice to evaluate the following limits.
\(\lim_{(x,y)\rightarrow(0,\pi/2)}\frac{1-\cos xy}{4x^2y^3}\)
asked 2021-01-10
Use the method of your choice to evaluate the following limits.
\(\lim_{(x,y)\rightarrow(1,1)}\frac{x^2+xy-2y^2}{2x^2-xy-y^2}\)
asked 2021-02-09
Use the method of your choice to evaluate the following limits.
\(\lim_{(x,y)\rightarrow(1,0)}\frac{\sin xy}{xy}\)
asked 2021-05-12
Evaluate the following limits.
\(\lim_{(x,y,z)\rightarrow(1,1,1)}\frac{x^{2}+xy-xz-yz}{x-z}\)
asked 2021-03-08
Use the method of your choice to evaluate the following limits.
\(\lim_{(x,y)\rightarrow(4,0)}x^2y\ln xy\)
asked 2021-02-21
Use the method of your choice to evaluate the following limits.
\(\lim_{(x,y)\rightarrow(1,0)}\frac{y\ln y}{x}\)
asked 2021-01-02
Use the method of your choice to evaluate the following limits.
\(\lim_{(x,y)\rightarrow(0,1)}\frac{y\sin x}{x(y+1)}\)
asked 2021-02-25
Evaluate the following limits.
\(\lim_{(x,y)\rightarrow(0,\pi)}\frac{\cos xy+\sin xy}{2y}\)
asked 2021-01-17
Evaluate the following limits.
\(\lim_{(x,y,z)\rightarrow(1,1,1)}\frac{yz-xy-xz-x^2}{yz+xy+xz-y^2}\)
asked 2021-02-05
Evaluate the following limits.
\(\lim_{(x,y,z)\rightarrow(1,1,1)}\frac{x^2+xy-xz-yz}{x-z}\)
...