# Use the method of your choice to evaluate the following limits. lim_{(x,y)rightarrow(1,0)}frac{yln y}{x}

Question
Limits and continuity
Use the method of your choice to evaluate the following limits.
$$\lim_{(x,y)\rightarrow(1,0)}\frac{y\ln y}{x}$$

2021-02-22
We have to find the limit of the given function at the given point.
$$\lim_{(x,y)\rightarrow(1,0)}\frac{y\ln y}{x}$$
$$\lim_{(x,y)\rightarrow(1,0)}\frac{y\ln y}{x}$$
$$\Rightarrow\frac{0\ln0}{1}$$
now as $$\ln0=1$$
therefore
=0
i.e. $$\lim_{(x,y)\rightarrow(1,0)}\frac{y\ln y}{x}=0$$

### Relevant Questions

Use the method of your choice to evaluate the following limits.
$$\lim_{(x,y)\rightarrow(2,0)}\frac{1-\cos y}{xy^2}$$
Use the method of your choice to evaluate the following limits.
$$\lim_{(x,y)\rightarrow(1,0)}\frac{\sin xy}{xy}$$
Use the method of your choice to evaluate the following limits.
$$\lim_{(x,y)\rightarrow(0,\pi/2)}\frac{1-\cos xy}{4x^2y^3}$$
Use the method of your choice to evaluate the following limits.
$$\lim_{(x,y)\rightarrow(0,1)}\frac{y\sin x}{x(y+1)}$$
Use the method of your choice to evaluate the following limits.
$$\lim_{(x,y)\rightarrow(1,1)}\frac{x^2+xy-2y^2}{2x^2-xy-y^2}$$
Use the method of your choice to evaluate the following limits.
$$\lim_{(x,y)\rightarrow(4,0)}x^2y\ln xy$$
Evaluate the following limits.
$$\lim_{(x,y,z)\rightarrow(1,1,1)}\frac{x^{2}+xy-xz-yz}{x-z}$$
$$x^{n}-a^{n}=1x-a21x^{n-1}+ax^{n-2}+a^{2}x^{n-3}+...+a^{n-2}x+a^{n-1}2$$, where n is a positive integer a is a real number.
$$\lim_{x\rightarrow a}\frac{x^{n}-a^{n}}{x-a}$$, for any positive integer n
$$x^{n}-a^{n}=1x-a21x^{n-1}+ax^{n-2}+a^{2}x^{n-3}+...+a^{n-2}x+a^{n-1}2$$, where n is a positive integer a is a real number.
$$\lim_{x\rightarrow a}\frac{x^{5}-a^{2}}{x-a}$$
$$x^{n}-a^{n}=1x-a21x^{n-1}+ax^{n-2}+a^{2}x^{n-3}+...+a^{n-2}x+a^{n-1}2$$, where n is a positive integer a is a real number.
$$\lim_{x\rightarrow 2}\frac{x^{5}-32}{x-2}$$