# Evaluate the following limit. lim_{hrightarrow0}frac{100}{(10h-1)^{11}+2}

Question
Limits and continuity
Evaluate the following limit.
$$\lim_{h\rightarrow0}\frac{100}{(10h-1)^{11}+2}$$

2021-03-05
Given,
$$\lim_{h\rightarrow0}\frac{100}{(10h-1)^{11}+2}$$
Consider,
$$\lim_{h\rightarrow0}\frac{100}{(10h-1)^{11}+2}$$
Now substitute the limit h tends to 0 we get,
$$\lim_{h\rightarrow0}\frac{100}{(10h-1)^{11}+2}=\lim_{h\rightarrow0}\frac{100}{(10(0)-1)^{11}+2}$$
$$=\lim_{h\rightarrow0}\frac{100}{(0-1)^{11}+2}$$
$$=\lim_{h\rightarrow0}\frac{100}{-1+2}$$
$$=\frac{100}{1}$$
$$=100$$
Therefore,
$$\lim_{h\rightarrow0}\frac{100}{(10h-1)^{11}+2}=100$$

### Relevant Questions

Evaluate the following limit.
$$\lim_{x\rightarrow0}\frac{\sin ax-\tan^{-1}ax}{bx^3}$$
Evaluate the following limit.
$$\lim_{x\rightarrow0^+}(1+5x)^{2/x}$$
Find the following limits or state that they do not exist.
$$\lim_{h\rightarrow0}\frac{3}{\sqrt{16+3h}+4}$$
Find each of the following limits. If the limit is not finite, indicate or for one- or two-sided limits, as appropriate.
$$\lim_{t\rightarrow0}\frac{5t^2}{\cos t-1}$$
Find each of the following limits. If the limit is not finite, indicate or for one- or two-sided limits, as appropriate.
$$\lim_{x\rightarrow\infty}\frac{4x^3-2x-1}{x^2-1}$$
Find the following limit.
$$\lim_{n\rightarrow\infty}\frac{2n^2+2}{5n^3-3n-1}$$
Let $$a_n\rightarrow0$$, and use the Algebraic Limit Theorem to compute each of the following limits (assuming the fractions are always defined):
$$\lim_{n\rightarrow\infty}\frac{1+2a_n}{1+3a_n-4(a_n)^2}$$
$$\lim_{x\rightarrow\infty}\frac{4x^3-2}{3x^4+5x}$$
$$\lim_{x\rightarrow\infty}(3\cdot2^{1-x}+x^2\cdot2^{1-x})$$
$$\lim_{(x,y)\rightarrow(2,0)}\frac{1-\cos y}{xy^2}$$