Use Taylor series to evaluate the following limits. lim_{xrightarrow0}frac{sec x-cos x-x^2}{x^4} (Hint: text{The Maclaurin series for sec x is }1+frac{x^2}{2}+frac{5x^4}{24}+frac{61x^6}{720}+...)

Use Taylor series to evaluate the following limits. lim_{xrightarrow0}frac{sec x-cos x-x^2}{x^4} (Hint: text{The Maclaurin series for sec x is }1+frac{x^2}{2}+frac{5x^4}{24}+frac{61x^6}{720}+...)

Question
Limits and continuity
asked 2021-01-31
Use Taylor series to evaluate the following limits.
\(\lim_{x\rightarrow0}\frac{\sec x-\cos x-x^2}{x^4} \ (Hint: \text{The Maclaurin series for sec x is }1+\frac{x^2}{2}+\frac{5x^4}{24}+\frac{61x^6}{720}+...)\)

Answers (1)

2021-02-01
Given that:
\(\text{Let f(x)}=\lim_{x\rightarrow0}\frac{\sec x-\cos x-x^2}{x^4}\)
Taylor's series,
\(f(x)=f(c)+f'(c)(x-c)+\frac{f''(c)}{2!}(x-c)^2+...+\frac{f^n(c)}{n!}(x-c)^n+R_n(x)\)
Where
\(R_n(x)=\frac{f^{(n+1)}}{(n+1)!}(x-c)^{n+1}\)
To find the Taylor's series,
The Maclaurin series for sec x is
\(\sec x=1+\frac{x^2}{2}+\frac{5x^4}{24}+\frac{61x^6}{720}+...\)
The Maclaurin series for sec x is
\(\cos x=1-\frac{x^2}{2}+\frac{x^4}{24}-\frac{x^6}{720}+...\)
\(\sec x-\cos x=(1+\frac{x^2}{2}+\frac{5x^4}{24}+\frac{61x^6}{720}+...)-(1-\frac{x^2}{2}+\frac{x^4}{24}-\frac{x^6}{720}+...)\)
\(=x^2+\frac{1}{6}x^4+\frac{31}{310}x^6+...\)
\(\sec x-\cos x-x^2=\frac{1}{6}x^4+\frac{31}{310}x^6+...\)
Then,
\(\frac{\sec x-\cos x-x^2}{x^4}=\frac{1}{6}+\frac{31}{310}x^2+...\)
Then,
\(f(x)=\frac{1}{6}+\frac{31}{310}x^2+...\)
Then,
To get the Taylor series is \(\frac{1}{6}+\frac{31}{310}x^2+...\)
To find limit as x approaches to 0
\(\frac{\sec x-\cos x-x^2}{x^4}=\frac{1}{6}+\frac{31}{310}x^2+...\)
Taking limit on both side as \(x\rightarrow0\)
To get,
\(\lim_{x\rightarrow0}\frac{\sec x-\cos x-x^2}{x^4}=\lim_{x\rightarrow0}(\frac{1}{6}+\frac{31}{310}x^2+...)\)
\(=\frac{1}{6}+\lim_{x\rightarrow0}\frac{31}{310}x^2+...\)
\(=\frac{1}{6}\)
\(\lim_{x\rightarrow0}\frac{\sec x-\cos x-x^2}{x^4}=\frac{1}{6}\)
0

Relevant Questions

asked 2021-05-27
a) Using limit rules each of the following limits
\(\lim_{x\rightarrow0}\frac{x+1}{x}\)
\(\lim_{x\rightarrow0}\frac{x+1}{x^{2}}\)
\(\lim_{x\rightarrow0}\frac{x}{x+1}\)
\(\lim_{x\rightarrow0}\frac{x+1}{x+2}\)
b) Using limit rules evaluate \(\lim_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}\)
asked 2020-11-26
Use Taylor series to evaluate the following limits.
\(\lim_{x\rightarrow0}\frac{\sqrt{1+2x}-1-x}{x^2}\)
asked 2020-11-09
Use Taylor series to evaluate the following limits. Express the result in terms of the nonzero real parameter(s).
\(\lim_{x\rightarrow0}\frac{e^{ax}-1}{x}\)
asked 2020-10-26
Use Taylor's theorem to evaluate the following limits. \(\lim_{x\rightarrow0}\frac{x\sin(x)-x^2}{\cos(x)-1+\frac{x^2}{2}}\)
asked 2020-11-22
Use Taylor series to evaluate the following limits.
\(\lim_{x\rightarrow4}\frac{\ln(x-3)}{x^2-16}\)
asked 2021-02-23
Use Taylor's theorem to evaluate the following limits. \(\lim_{x\rightarrow0}\frac{3\sin^2(x)+2\sin^4(x)}{3x\tan(x)}\)
asked 2021-05-27
Evaluate \(\lim_{x \rightarrow \infty} \frac{\sin h x}{e^x}\)
asked 2020-12-05
Use L'Hospital Rule to evaluate the following limits.
\(\lim_{x\rightarrow0}\frac{\tanh^{-1}x}{\tan(\pi x/2)}\)
asked 2021-01-15
Suppose the functions f(x) and g(x) are defined for all x and that \(\lim_{x\rightarrow0}f(x)=\frac{1}{2}\) and \(\lim_{x\rightarrow0}g(x)=\sqrt2\). Find the limits as \(x\rightarrow0\) of the following functions. \(f(x)\frac{\cos x}{x-1}\)
asked 2021-03-06
Use the method of your choice to evaluate the following limits.
\(\lim_{(x,y)\rightarrow(2,0)}\frac{1-\cos y}{xy^2}\)
...