Evaluate the following limits lim_{xrightarrow0}frac{sin7x}{sin3x}

Evaluate the following limits lim_{xrightarrow0}frac{sin7x}{sin3x}

Question
Limits and continuity
asked 2020-11-10
Evaluate the following limits
\(\lim_{x\rightarrow0}\frac{\sin7x}{\sin3x}\)

Answers (1)

2020-11-11
We have to evaluate the limit:
\(\lim_{x\rightarrow0}\frac{\sin7x}{\sin3x}\)
We know that
\(\lim_{x\rightarrow0}\frac{\sin x}{x}=1\)
if \(\lim_{x\rightarrow0}\frac{\sin ax}{x}\)
in this case we need to multiply and divide by a since we do make same in the denominator as in the angle of sine.
\(\lim_{x\rightarrow0}\frac{\sin ax}{x}\times=\lim_{x\rightarrow0}\frac{\sin ax}{ax}\times a\)
\(=1\times a\)
\(=a\)
if \(\lim_{x\rightarrow0}\frac{\sin ax}{\sin bx}\)
then same case will be for numerator and denominator.
hence,
\(\lim_{x\rightarrow0}\frac{\sin ax}{\sin bx}=\frac{a}{b}\)
Finding given limit:
here, a=7
b=3
Hence,
\(\lim_{x\rightarrow0}\frac{\sin 7x}{\sin 3x}=\frac{7}{3}\)
Second method:
Multiplying and dividing by 7x for numerator and by 3x for denominator, we get
\(\lim_{x\rightarrow0}\frac{\sin 7x}{\sin 3x}\times\frac{7x}{7x}\times\frac{3x}{3x}=\lim_{x\rightarrow0}\frac{\frac{\sin7x}{7x}}{\frac{3x}{3x}}\times\frac{7x}{1}\times\frac{1}{3x}\)
\(=\frac{1}{1}\times\frac{7}{1}\times\frac{1}{3}\)
\(=\frac{7}{3}\)
Hence, value of the given limit is \(\frac{7}{3}\)
0

Relevant Questions

asked 2020-12-01
Evaluate the following limits.
\(\lim_{x\rightarrow0}\frac{\sin3x}{\tan4x}\)
asked 2020-11-09
Use Taylor series to evaluate the following limits. Express the result in terms of the nonzero real parameter(s).
\(\lim_{x\rightarrow0}\frac{e^{ax}-1}{x}\)
asked 2021-01-31
Use Taylor series to evaluate the following limits.
\(\lim_{x\rightarrow0}\frac{\sec x-\cos x-x^2}{x^4} \ (Hint: \text{The Maclaurin series for sec x is }1+\frac{x^2}{2}+\frac{5x^4}{24}+\frac{61x^6}{720}+...)\)
asked 2020-11-26
Use Taylor series to evaluate the following limits.
\(\lim_{x\rightarrow0}\frac{\sqrt{1+2x}-1-x}{x^2}\)
asked 2021-02-22
Evaluate the following limits.
\(\lim_{x\rightarrow0}\frac{\tan5x}{x}\)
asked 2021-02-19
Evaluate the following limits.
\(\lim_{x\rightarrow0}\frac{\tan7x}{\sin x}\)
asked 2020-12-05
Use L'Hospital Rule to evaluate the following limits.
\(\lim_{x\rightarrow0}\frac{\tanh^{-1}x}{\tan(\pi x/2)}\)
asked 2021-02-01
Evaluate the following limits. \(\lim_{x\rightarrow0}\frac{\sin4x}{x}\)
asked 2021-02-23
Use Taylor's theorem to evaluate the following limits. \(\lim_{x\rightarrow0}\frac{3\sin^2(x)+2\sin^4(x)}{3x\tan(x)}\)
asked 2020-10-26
Use Taylor's theorem to evaluate the following limits. \(\lim_{x\rightarrow0}\frac{x\sin(x)-x^2}{\cos(x)-1+\frac{x^2}{2}}\)
...