# Evaluate the following limits. lim_{(x,y)rightarrow(2,-1)}(xy^8-3x^2y^3)

Question
Limits and continuity
Evaluate the following limits.
$$\lim_{(x,y)\rightarrow(2,-1)}(xy^8-3x^2y^3)$$

2020-11-02
We have to evaluate the limit of the given function:
$$\lim_{(x,y)\rightarrow(2,-1)}(xy^8-3x^2y^3)$$
Solve:
$$\lim_{(x,y)\rightarrow(2,-1)}(xy^8-3x^2y^3)$$
$$\Rightarrow(2\times(-1)^8-3(2)^2(-1)^3)$$
$$\Rightarrow(2-(-12))$$
$$\Rightarrow14$$
$$\because\lim_{(x,y)\rightarrow(2,-1)}(xy^8-3x^2y^3)=14$$

### Relevant Questions

Evaluate the following limits.
$$\lim_{(x,y,z)\rightarrow(1,1,1)}\frac{x^{2}+xy-xz-yz}{x-z}$$
Use the method of your choice to evaluate the following limits.
$$\lim_{(x,y)\rightarrow(0,\pi/2)}\frac{1-\cos xy}{4x^2y^3}$$
Use the method of your choice to evaluate the following limits.
$$\lim_{(x,y)\rightarrow(1,1)}\frac{x^2+xy-2y^2}{2x^2-xy-y^2}$$
Evaluate the following limits.
$$\lim_{(x,y)\rightarrow(0,\pi)}\frac{\cos xy+\sin xy}{2y}$$
Use the method of your choice to evaluate the following limits.
$$\lim_{(x,y)\rightarrow(2,0)}\frac{1-\cos y}{xy^2}$$
$$\lim_{(x,y,z)\rightarrow(1,1,1)}\frac{yz-xy-xz-x^2}{yz+xy+xz-y^2}$$
$$\lim_{(x,y,z)\rightarrow(1,1,1)}\frac{x^2+xy-xz-yz}{x-z}$$
$$\lim_{(x,y,z)\rightarrow(2,2,3)}\frac{x^2z-3x^2-y^2z+3y^2}{xz-3x-yz+3y}$$
Evaluate the following limits. $$\lim_{(x,y)\rightarrow(e^2,4)}\ln\sqrt{xy}$$
Evaluate the following limits. $$\lim_{(x,y)\rightarrow(2,2)}\frac{y^2-4}{xy-2x}$$