Find the limits: lim_{xrightarrow3}f(x), where f(x)=frac{1}{2}x-7

Question
Limits and continuity
asked 2021-01-04
Find the limits:
\(\lim_{x\rightarrow3}f(x),\ where\ f(x)=\frac{1}{2}x-7\)

Answers (1)

2021-01-05
Consider the given:
Find the limits:
\(f(x)=\frac{1}{2}x-7\)
\(\lim_{x\rightarrow3}f(x),\ where\ f(x)=\frac{1}{2}x-7\)
\(=\frac{1}{2}(3)-7\)
\(=\frac{3}{2}-7\)
\(=\frac{3-14}{2}\)
\(=-\frac{11}{2}\)
Result: \(\lim_{x\rightarrow3}f(x),\ where\ f(x)=\frac{1}{2}x-7=-\frac{11}{2}\)
0

Relevant Questions

asked 2020-12-27
Find the limits:
\(\lim_{x\rightarrow3}\frac{-2}{x-3}\)
asked 2021-01-15
Suppose the functions f(x) and g(x) are defined for all x and that \(\lim_{x\rightarrow0}f(x)=\frac{1}{2}\) and \(\lim_{x\rightarrow0}g(x)=\sqrt2\). Find the limits as \(x\rightarrow0\) of the following functions. \(f(x)\frac{\cos x}{x-1}\)
asked 2021-02-01
Find the limits. Write \(\infty\ or\ -\infty\) where appropriate.
\(\lim_{x\rightarrow2^-}\frac{x^2-3x+2}{x^3-2x^2}\)
asked 2021-01-31
Find the limits. Write \(\infty\) or \(-\infty\) where appropriate. \(\lim_{x\rightarrow0^-}\frac{x^2-3x+2}{x^3-4x}\)
asked 2020-11-14
Find the limits. \(\lim_{x\rightarrow-2} g(f(x))\)
\(f(x)=x+7 g(x)=x^2\)
asked 2021-02-03
A piecewise function is given. Use properties of limits to find the shown indicated limit, or state that the limit does not exist. \(f(x)=\begin{cases}\sqrt[3]{x^2+7}&\text{if}&x<1\\4x&\text{if}&x\geq1\end{cases}\)
\(\lim_{x\rightarrow1} f(x)\)
asked 2021-02-26
Find the function The following limits represent the slope of a curve y=f(x) at the point {a,f(a)} Determine a possible function f and number a, then calculate the limit
\(\lim_{x\rightarrow2}\frac{5\cdot x^2-20}{x-2}\)
asked 2021-03-09
Find each of the following limits. If the limit is not finite, indicate or for one- or two-sided limits, as appropriate.
\(\lim_{x\rightarrow\infty}\frac{4x^3-2x-1}{x^2-1}\)
asked 2021-02-11
Find the limits. \(\lim_{x\rightarrow3\sqrt2}(\frac{x}{2}-\frac{1}{x})\)
asked 2020-10-23
Find the limits
\(\lim_{x\rightarrow-3}\frac{2-\sqrt{x^2-5}}{x+3}\)
...