Question

Find the limits: lim_{xrightarrow3}f(x), where f(x)=frac{1}{2}x-7

Limits and continuity
ANSWERED
asked 2021-01-04
Find the limits:
\(\lim_{x\rightarrow3}f(x),\ where\ f(x)=\frac{1}{2}x-7\)

Answers (1)

2021-01-05
Consider the given:
Find the limits:
\(f(x)=\frac{1}{2}x-7\)
\(\lim_{x\rightarrow3}f(x),\ where\ f(x)=\frac{1}{2}x-7\)
\(=\frac{1}{2}(3)-7\)
\(=\frac{3}{2}-7\)
\(=\frac{3-14}{2}\)
\(=-\frac{11}{2}\)
Result: \(\lim_{x\rightarrow3}f(x),\ where\ f(x)=\frac{1}{2}x-7=-\frac{11}{2}\)
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-05-27
a) Using limit rules each of the following limits
\(\lim_{x\rightarrow0}\frac{x+1}{x}\)
\(\lim_{x\rightarrow0}\frac{x+1}{x^{2}}\)
\(\lim_{x\rightarrow0}\frac{x}{x+1}\)
\(\lim_{x\rightarrow0}\frac{x+1}{x+2}\)
b) Using limit rules evaluate \(\lim_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}\)
asked 2021-05-16
Find the limit (if it exists) and discuss the continuity of the function. \(\displaystyle\lim_{{{\left({x},{y}\right)}→{\left({0},{0}\right)}}}{\frac{{{y}+{x}{e}^{{-{y}²}}}}{{{1}+{x}²}}}\)
asked 2021-05-01
Find the limit and discuss the continuity of the function. \(\displaystyle\lim_{{{x},{y}}}→{\left({0},{1}\right)}\frac{{\arccos{{\left(\frac{{x}}{{y}}\right)}}}}{{1}}+{x}{y}\)
asked 2021-05-27
Evaluate \(\lim_{x \rightarrow \infty} \frac{\sin h x}{e^x}\)
asked 2020-12-27
Find the limits:
\(\lim_{x\rightarrow3}\frac{-2}{x-3}\)
asked 2021-06-28
Find the limit (if it exists) and discuss the continuity of the function. \(\displaystyle\lim_{{{x},{y}}}\rightarrow{\left({1},{1}\right)}{\frac{{{x}{y}}}{{{x}²+{y}²}}}\)
asked 2021-05-31
Find the limit and discuss the continuity of the function. \(\displaystyle\lim_{{{x},{y}}}\rightarrow{\left(-{1},{2}\right)}{\frac{{{\left({x}+{y}\right)}}}{{{\left({x}-{y}\right)}}}}\)
asked 2021-06-26
Find the limit and discuss the continuity of the function. \(\displaystyle\lim_{{{x},{y}}}\rightarrow{\left({\frac{{\pi}}{{{4}}}},{2}\right)}{y}{\cos{{x}}}{y}\)
asked 2021-06-04
Find the limit and discuss the continuity of the function. \(\displaystyle\lim_{{{x},{y}}}\rightarrow{\left({2}\pi,{4}\right)}{\sin{{\frac{{{x}}}{{{y}}}}}}\)
asked 2021-05-22
Find the limit and discuss the continuity of the function. \(\displaystyle\lim_{{{x},{y},{z}}}\rightarrow{\left({1},{3},{4}\right)}\sqrt{{{\left({x}+{y}+{z}\right)}}}\)
...