 Find sets of parametric equatons and symmetric equations of the pamangking8 2021-11-30 Answered
Find sets of parametric equatons and symmetric equations of the line tha passes though the given point and is parallel to the given vector or line
$\begin{array}{|c|c|}\hline \text{Point} & \text{Parallel to} \\ \hline (-1,\ 0,\ 8) & v=3i+4j-8k \\ \hline \end{array}$
a) parametric equations
b) symmetric equations
$$\displaystyle{\frac{{{x}+{1}}}{{{3}}}}={\frac{{{y}}}{{{4}}}}={\frac{{{8}-{z}}}{{{8}}}}$$

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it Momp1989
Step 1
Given:
The given point is $$\displaystyle{\left(−{1},\ {0},\ {8}\right)}$$ and the vector or line is $$\displaystyle{v}={3}{i}+{4}{j}-{8}{k}$$
To determine: The sets of parametric equations and symmetric equations of the line that passes through the given point and is parallel to the given vector or line.
Step 2
a) The parametric equations for a line passing through $$\displaystyle{\left({x}_{{{0}}},\ {y}_{{{0}}},\ {z}_{{{0}}}\right)}$$ and parallel to the vector $$\displaystyle{v}={a}{i}+{b}{j}+{c}{k}$$ are
$$\displaystyle{x}={x}_{{{0}}}+{a}{t},\ {y}={y}_{{{0}}}+{b}{t},\ {z}={z}_{{{0}}}+{c}{t}$$
The required parametric equations are
$$\displaystyle{x}=-{1}+{3}{t},\ {y}={4}{t},\ {z}={8}-{8}{t}$$
Step 3
b) The parametric equations are
$$\displaystyle{x}=-{1}+{3}{t},\ {y}={4}{t},\ {z}={8}-{8}{t}$$
Solving for t we have,
$$\displaystyle\Rightarrow{t}={\frac{{{x}+{1}}}{{{3}}}},\ {t}={\frac{{{y}}}{{{4}}}},\ {t}={\frac{{{z}-{8}}}{{-{8}}}}$$
$$\displaystyle\Rightarrow{\frac{{{x}+{1}}}{{{3}}}}={\frac{{{y}}}{{{4}}}}={\frac{{{z}-{8}}}{{-{8}}}}$$
$$\displaystyle\Rightarrow{\frac{{{x}+{1}}}{{{3}}}}={\frac{{{y}}}{{{4}}}}={\frac{{{8}-{z}}}{{{8}}}}$$
Symmetric equations
$$\displaystyle{\frac{{{x}+{1}}}{{{3}}}}={\frac{{{y}}}{{{4}}}}={\frac{{{8}-{z}}}{{{8}}}}$$