Volume of the cone \(\displaystyle{v}={\frac{{{1}}}{{{3}}}}\pi{r}^{{{2}}}{h}\)

\(\displaystyle{r}={13}{f}{t}\)

\(\displaystyle{h}={16}{f}{t}\)

\(\displaystyle{v}={\frac{{{1}}}{{{3}}}}\times{\left({3.14}\right)}\times{\left({13}\right)}^{{{2}}}\times{\left({16}\right)}\)

\(\displaystyle{v}={2830.19}\) cubic ft

volume of the cylinder \(\displaystyle=\pi{r}^{{{2}}}{h}\)

\(\displaystyle{r}={\frac{{{d}{i}{a}{m}{e}{t}{e}{r}}}{{{2}}}}={\frac{{{8}{c}{m}}}{{{2}}}}={4}{c}{m}\)

\(\displaystyle{h}={3.3}{c}{m}\)

\(\displaystyle{v}={\left({3.14}\right)}{\left({4}\right)}^{{{2}}}{\left({3.3}\right)}\)

\(\displaystyle={165.79}\) cubic cm

\(\displaystyle{r}={13}{f}{t}\)

\(\displaystyle{h}={16}{f}{t}\)

\(\displaystyle{v}={\frac{{{1}}}{{{3}}}}\times{\left({3.14}\right)}\times{\left({13}\right)}^{{{2}}}\times{\left({16}\right)}\)

\(\displaystyle{v}={2830.19}\) cubic ft

volume of the cylinder \(\displaystyle=\pi{r}^{{{2}}}{h}\)

\(\displaystyle{r}={\frac{{{d}{i}{a}{m}{e}{t}{e}{r}}}{{{2}}}}={\frac{{{8}{c}{m}}}{{{2}}}}={4}{c}{m}\)

\(\displaystyle{h}={3.3}{c}{m}\)

\(\displaystyle{v}={\left({3.14}\right)}{\left({4}\right)}^{{{2}}}{\left({3.3}\right)}\)

\(\displaystyle={165.79}\) cubic cm