# Evaluate the following integrals. int_0^1frac{16^x}{4^{2x}}dx

Question
Integrals
Evaluate the following integrals.
$$\int_0^1\frac{16^x}{4^{2x}}dx$$

2021-03-10
$$\text{To integrate: }\int_0^1\frac{16^x}{4^{2x}}dx$$
$$\text{Solution:}$$
$$\int_0^1\frac{16^x}{4^{2x}}dx$$
$$\text{Om simplifying further we get:}$$
$$\int_0^1\frac{16^x}{4^{2x}}dx=\int_0^1\frac{(4^2)^x}{4^{2x}}dx$$
$$=\int_0^1\frac{4^{2x}}{4^{2x}}dx$$
$$=\int_0^1 1dx$$
$$=[x]_0^1$$
$$=[1-0]$$
$$=1$$
$$\textbf{Result: }\int_0^1\frac{16^x}{4^{2x}}dx=1$$

### Relevant Questions

Evaluate the following iterated integrals.
$$\int_0^2\int_0^1\frac{8xy}{1+x^4}dxdy$$
Evaluate the following definite integrals.
$$\int_{1/8}^1\frac{dx}{x\sqrt{1+x^{2/3}}}$$
Evaluate each of the following integrals.
$$\int_{0}^{2}(x^{2}+2x-3)^{3}(4x+4)dx$$
Evaluate the following integrals.
$$\int\frac{4^{\cot x}}{\sin^2x}dx$$
Evaluate the following integrals.
$$\int_0^3\frac{2x-1}{x+1}$$
Evaluate the integral. $$\int_0^1\frac{(x-4)}{(x^2-5x+6dx)}$$
$$\int_0^{\pi/2}4^{\sin x}\cos xdx$$
$$\int_0^2\int_0^1 4xy\ dx\ dy$$
$$\int_0^3\int_{-2}^1 (2x+3y)dxdy$$
$$\int\frac{\ln^2x+2\ln x-1}{x}dx$$