Givens:

\(\displaystyle{F}_{{{a}{p}{p}}}={35}{N}\)

\(\displaystyle\theta={25}^{{\circ}}\) Down the horizontal.

\(\displaystyle\triangle{x}={50}{m}\)

We know that the work law is: \(\displaystyle{W}={F}{\cos{\theta}}{d}={F}_{{{p}{a}{r}{a}{l}\le{l}}}{d}\)

In this case \(\displaystyle{F}_{{{p}{a}{r}{a}{l}\le{l}}}={F}_{{{a}{p}{p}}}{\cos{{25}}}°\)

\(\displaystyle{W}_{{{m}{a}{n}}}={F}_{{{a}{p}{p}}}{\cos{{25}}}°\triangle{x}={35}{x}\times{\cos{{25}}}°\times{50}\)

\(\displaystyle{W}_{{{m}{a}{n}}}={1.58}{k}{J}\)

\(\displaystyle{F}_{{{a}{p}{p}}}={35}{N}\)

\(\displaystyle\theta={25}^{{\circ}}\) Down the horizontal.

\(\displaystyle\triangle{x}={50}{m}\)

We know that the work law is: \(\displaystyle{W}={F}{\cos{\theta}}{d}={F}_{{{p}{a}{r}{a}{l}\le{l}}}{d}\)

In this case \(\displaystyle{F}_{{{p}{a}{r}{a}{l}\le{l}}}={F}_{{{a}{p}{p}}}{\cos{{25}}}°\)

\(\displaystyle{W}_{{{m}{a}{n}}}={F}_{{{a}{p}{p}}}{\cos{{25}}}°\triangle{x}={35}{x}\times{\cos{{25}}}°\times{50}\)

\(\displaystyle{W}_{{{m}{a}{n}}}={1.58}{k}{J}\)