Question

Use the reduction formulas in a table of integrals to evaluate the following integrals. int p^2e^{-3p}dp

Integrals
ANSWERED
asked 2020-12-25
Use the reduction formulas in a table of integrals to evaluate the following integrals.
\(\int p^2e^{-3p}dp\)

Answers (1)

2020-12-26
\(\text{Reduction formula for Exponential function is given as:}\)
\(\int x^ae^{bx}dx=[\frac{1}{b}x^ae^{bx}]-[\frac{a}{b}\int x^{a-1}e^{bc}]dx\)
\(\text{we have to evaluate:}\)
\(\int p^2e^{-3p}dp\)
\(\text{Using reduction formula, we will integrate it.}\)
\(\int p^2e^{-3p}dp=[\frac{1}{-3}p^2e^{-3p}]-[\frac{2}{-3}\int p^{2-1}\cdot e^{-3p}]dp\)
\(=\frac{1}{3}p^2e^{-3p}+\frac{2}{3}\int pe^{-3p}dp\)
\(\text{Now, we will integrate} \int pe^{-3p}dp\ \text{using integration by parts}\)
\(\int pe^{-3p}dp=p\int e^{-3p}dp-\int[\frac{d}{dx}(p)\int e^{-3p}dp]dp\)
\(=p\cdot\frac{e^{-3p}}{-3}-\int[1\cdot\frac{e^{-3p}}{-3}]dp\)
\(=-\frac{pe^{-3p}}{3}+\frac{1}{3}\int e^{-3p}dp\)
\(=-\frac{pe^{-3p}}{3}+\frac{1}{3}\cdot\frac{e^{-3p}}{-3}+c\)
\(=-\frac{pe^{-3p}}{3}-\frac{1}{9}e^{-3p}+c\)
\(\text{Putting above integration value in equation, we get }\)
\(\int p^2e^{-3p}dp=-\frac{1}{3}p^2e^{-3p}+\frac{2}{3}[-\frac{pe^{-3p}}{3}-\frac{1}{9}e^{-3p}]+c\)
\(=-\frac{1}{3}p^2e^{-3p}-\frac{2}{9}pe^{-3p}-\frac{2}{27}e^{-3p}+c\)
\(=-e^{-3p}(\frac{1}{3}p^2+\frac{2}{9}+\frac{2}{27})+c\)
\(\text{Hence, this is required integration.}\)
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-05-14
Use the Table of Integrals to evaluate the integral. (Use C for the constant of integration.)
\(\int37e^{74x}\arctan(e^{37x})dx\)
Inverse Trigonometric Forms (92): \(\int u\tan^{-1}u\ du=\frac{u^{2}+1}{2}\tan^{-1}u-\frac{u}{2}+C\)
asked 2020-11-09
Use the reduction formulas in a table of integrals to evaluate the following integrals.
\(\int x^3e^{2x}dx\)
asked 2021-05-17

Use the Table of Integrals to evaluate the integral. (Use C for the constant of integration.)
\(7\sin^{8}(x)\cos(x)\ln(\sin(x))dx\)

no. 101. \(\displaystyle\int{u}^{{{n}}} \ln{{u}}{d}{u}={\frac{{{u}^{{{n}+{1}}}}}{{{\left({n}+{1}\right)}^{{{2}}}}}}{\left[{\left({n}+{1}\right)} \ln{{u}}-{1}\right]}+{C}\)

asked 2021-05-26
use the table of integrals to evaluate the following integral.
\(\int 3x \sqrt{6x-x^2}dx\)
asked 2021-05-27
Evaluate the indefinite integral as a power series.
\(\int \frac{\tan^{-1}x}{x}dx\)
\(f(x)=C+\sum_{n=0}^\infty\left( \dots \right)\)
What is the radius of convergence R?
asked 2021-06-10
Evaluate the integral \(\int \arctan(x)dx\)
A)\(-\arctan(x)+\ln(x^2+1)+C\)
B)\(\frac{1}{x^2+1}+C\)
C)\(x \arctan(x)-\frac{1}{2}\ln(x^2+1)+C\)
D) \(\ln|\arccos(x)|+C\)
E) \(x\arctan(x)+C\)
asked 2021-06-13
Evaluate the line integral, where C is the given curve. \(\int y3\ ds,\ C\div x=t3,\ y=t,\ 0?\ t?\ 3\)
asked 2021-05-26
Evaluate the surface integral.
\(\int \int_s (x^2z +y^2z)dS\)
S is the hemisphere \(x^2 +y^2 + z^2 = 9, z \geq 0\)
asked 2021-06-04
Evaluate the indefinite integral as an infinite series. \(\int \frac{\cos x-1}{x} dx\)
asked 2021-05-02
Evaluate the integral. (Use C for the constant of integration.)
\(\int \ln (\sqrt x)dx\)
...