Which would you expect to have a density curve that is higher at the mean: the standard normal distribution or a normal distribution with standard deviation 0.5? Explain.

Normal distributions
asked 2020-11-17
Which would you expect to have a density curve that is higher at the mean: the standard normal distribution or a normal distribution with standard deviation 0.5? Explain.

Answers (1)

The curve is in the form of normal distribution if it is bell shaped and symmetric and the curve is called the density curve which is symmetric, and centered around its mean and the spread is determined by its standard deviation.
The uniform continuous distribution is the curve in which all the intervals have same length and the standard deviation for this curve must be | or less than 1, which means the variance of uniform continuous distribution is less than 1.
The height of density curve with standard deviation is higher around mean in normal distribution because it became narrow around the mean whereas the graph of uniform continuous distribution represents uniformity in all interval.
Thus, the standard normal distribution has higher density curve at the mean than uniform distribution.
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-06-05
Use the following Normal Distribution table to calculate the area under the Normal Curve (Shaded area in the Figure) when \(Z=1.3\) and \(H=0.05\);
Assume that you do not have vales of the area beyond \(z=1.2\) in the table; i.e. you may need to use the extrapolation.
Check your calculated value and compare with the values in the table \([for\ z=1.3\ and\ H=0.05]\).
Calculate your percentage of error in the estimation.
How do I solve this problem using extrapolation?
\(\begin{array}{|c|c|}\hline Z+H & Prob. & Extrapolation \\ \hline 1.20000 & 0.38490 & Differences \\ \hline 1.21000 & 0.38690 & 0.00200 \\ \hline 1.22000 & 0.38880 & 0.00190 \\ \hline 1.23000 & 0.39070 & 0.00190 \\ \hline 1.24000 & 0.39250 & 0.00180 \\ \hline 1.25000 & 0.39440 & 0.00190 \\ \hline 1.26000 & 0.39620 & 0.00180 \\ \hline 1.27000 & 0.39800 & 0.00180 \\ \hline 1.28000 & 0.39970 & 0.00170 \\ \hline 1.29000 & 0.40150 & 0.00180 \\ \hline 1.30000 & 0.40320 & 0.00170 \\ \hline 1.31000 & 0.40490 & 0.00170 \\ \hline 1.32000 & 0.40660 & 0.00170 \\ \hline 1.33000 & 0.40830 & 0.00170 \\ \hline 1.34000 & 0.41010 & 0.00180 \\ \hline 1.35000 & 0.41190 & 0.00180 \\ \hline \end{array}\)
asked 2021-09-12
Suppose the ages of students in Statistics 101 follow a normal distribution with a mean of 23 years and a standard deviation of 3 years. If we randomly sampled 100 students, which of the following statements about the sampling distribution of the sample mean age is incorrect.
A) The expected value of the sample mean is equal to the population’s mean.
B) The standard deviation of the sampling distribution is equal to 3 years.
C) The shape of the sampling distribution is approximately normal.
D) The standard error of the sampling distribution is equal to 0.3 years.
asked 2021-05-14
When σ is unknown and the sample size is \(\displaystyle{n}\geq{30}\), there are tow methods for computing confidence intervals for μμ. Method 1: Use the Student's t distribution with d.f. = n - 1. This is the method used in the text. It is widely employed in statistical studies. Also, most statistical software packages use this method. Method 2: When \(\displaystyle{n}\geq{30}\), use the sample standard deviation s as an estimate for σσ, and then use the standard normal distribution. This method is based on the fact that for large samples, s is a fairly good approximation for σσ. Also, for large n, the critical values for the Student's t distribution approach those of the standard normal distribution. Consider a random sample of size n = 31, with sample mean x¯=45.2 and sample standard deviation s = 5.3. (c) Compare intervals for the two methods. Would you say that confidence intervals using a Student's t distribution are more conservative in the sense that they tend to be longer than intervals based on the standard normal distribution?
asked 2021-01-27

Np>5 and nq>5, estimate P(at least 11) with n=13 and p = 0.6 by using the normal distributions as an approximation to the binomial distribution. if \(\displaystyle{n}{p}{<}{5}{\quad\text{or}\quad}{n}{q}{<}{5}\) then state the normal approximation is not suitable.
p (at least 11) = ?