 # Let R_1 and R_2 be a relations on a set Lloyd Allen 2021-11-19 Answered
Let $$\displaystyle{R}_{{1}}$$ and $$\displaystyle{R}_{{2}}$$ be a relations on a set A represented by the matrices below:
$M_{R1}=\begin{bmatrix}0&1&0\\1&1&1\\1&0&0\end{bmatrix}$
$M_{R2}=\begin{bmatrix}0&1&0\\0&1&1\\1&1&1\end{bmatrix}$
Find the matrix that represents $$\displaystyle{R}_{{1}}\cap{R}_{{2}}$$

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself. romancemrf

Consider the given matrices, $M_{R1}=\begin{bmatrix}0&1&0\\1&1&1\\1&0&0\end{bmatrix}\ and\ M_{R2}=\begin{bmatrix}0&1&0\\0&1&1\\1&1&1\end{bmatrix}$
Note that, the intersection $$\displaystyle{a}\cap{B}$$ is all elements that are both in A and in B.
The matrix corresponding to the intersection of two relations is the meet of the matrices representing each of the relations.
$$\displaystyle{M}_{{{R}_{{1}}\cap\ {R}_{{2}}}}={M}_{{{R}_{{1}}}}\cap{M}_{{{R}_{{2}}}}$$
$=\begin{bmatrix}0\wedge0&1\wedge1&0\wedge0\\1\wedge0&1\wedge1&1\wedge1\\1\wedge1&0\wedge1&0\wedge1\end{bmatrix}$
$=\begin{bmatrix}0&1&1\\0&1&1\\1&0&0\end{bmatrix}$
Thus, the matrix that represents $R_1\cap R_2\ is\ =\begin{bmatrix}0&1&1\\0&1&1\\1&0&0\end{bmatrix}$