Let \[y=\begin{bmatrix}2\\3\end{bmatrix} and u=\begin{bmatrix}4\\-7\end{bmatrix}\]Write y as the sum of two

elchatosarapage 2021-11-23 Answered
Let \[y=\begin{bmatrix}2\\3\end{bmatrix}\ and\ u=\begin{bmatrix}4\\-7\end{bmatrix}\]
Write y as the sum of two orthogonal vectors, one in Span{u} and one orthogonal to u.

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

Muspee
Answered 2021-11-24 Author has 930 answers
Formula for orthogonal projection:
\(\displaystyle\hat{{{y}}}={\frac{{{y}\cdot{u}}}{{{u}\cdot{u}}}}{u}\)
\(\displaystyle{y}\cdot{u}={\left({2},{3}\right)}\cdot{\left({4},-{7}\right)}={8}-{21}=-{13}\)
\(\displaystyle{u}\cdot{u}={\left({4},-{7}\right)}\cdot{\left({4},-{7}\right)}={16}+{49}={65}\)
\[\hat{y}=\frac{-13}{65}u=\frac{-1}{5}\begin{bmatrix}4\\-7 \end{bmatrix}=\begin{bmatrix}-4/5\\7/5\end{bmatrix}\]
\(\displaystyle\hat{{{y}}}\) is the part that is in span u. Now calculate other part:
\[y-\hat{y}=\begin{bmatrix}2\\3\end{bmatrix}-\begin{bmatrix}-4/5\\7/5\end{bmatrix}=\begin{bmatrix}14/5\\8/5\end{bmatrix}\]
\[y=\begin{bmatrix}-4/5\\7/5\end{bmatrix}+\begin{bmatrix}14/5 \\8/5\end{bmatrix}\]
Have a similar question?
Ask An Expert
0
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-11-14
Let A and B be \[A=\begin{bmatrix}1&0&-2\\3&1&0\\1&0&-3\end{bmatrix},\ B=\begin{bmatrix}1&0&-3\\3&1&0\\1&0&-2\end{bmatrix}\]
Find an elementary matrix E such that EA=B.
asked 2021-11-22
Let \[a_1=\begin{bmatrix}1\\5\\-1\end{bmatrix},\ a_2=\begin{bmatrix}-6\\-26\\2\end{bmatrix}\], and \[b=\begin{bmatrix}5\\9\\h\end{bmatrix}\]. For what value(s) of h is b in the plane spanned by \(\displaystyle{a}_{{1}}\) and \(\displaystyle{a}_{{2}}\)?
asked 2021-10-20

Let
\(A=\left[ \begin{array}{rr}{3} & {-6} \\ {-1} & {2}\end{array}\right]\)
Construct a \(\displaystyle{2}\times{2}\) matrix B such that AB is the zero matrix. Use two different nonzero columns for B.

asked 2020-12-16

Compute the following
a) \(\begin{bmatrix}-5 & -4&3&-10&-3&6 \\6&-10&5&9&4&-1 \end{bmatrix}+\begin{bmatrix}-7 & 3&10&0&8&8 \\8&0&4&-3&-8&0 \end{bmatrix}\)
b) \(-5\begin{bmatrix}8 & -10&7 \\0 & -9&7\\10&-5&-10\\1&5&-10 \end{bmatrix}\)
c)\(\begin{bmatrix}3 & 0&-8 \\6 & -4&-2\\6&0&-8\\-9&-7&-7 \end{bmatrix}^T\)

asked 2021-02-09

Compute the indicated matrices, if possible .
\(A^2B\)
let \(A=\begin{bmatrix}1 & 2 \\3 & 5 \end{bmatrix} \text{ and } B=\begin{bmatrix}2 & 0 & -1 \\3 & -3 & 4 \end{bmatrix}\)

asked 2021-01-17

Refer to the following matrices.
\(A=\begin{bmatrix}2 & -3&7&-4 \\-11 & 2&6&7 \\6 & 0&2&7 \\5 & 1&5&-8 \end{bmatrix} B=\begin{bmatrix}3 & -1&2 \\0 & 1&4 \\3 & 2&1 \\-1 & 0&8 \end{bmatrix} , C=\begin{bmatrix}1& 0&3 &4&5 \end{bmatrix} , D =\begin{bmatrix}1\\ 3\\-2 \\0 \end{bmatrix}\)
Identify the row matrix. Matrix C is a row matrix.

asked 2021-02-05

Given the following matrices:
\(A=\begin{bmatrix}1 & 2 &9 \\ -1 & 2 &0 \\ 0&0&4 \end{bmatrix} B=\begin{bmatrix}0 & -1 \\ 2 & 6 \end{bmatrix} C=\begin{bmatrix}2 & 1 \\ 0 & 0 \end{bmatrix} D=\begin{bmatrix}1 \\ 2 \\ -4 \end{bmatrix}\)
Identify the following:
a) A-B
b) B+C
c) C-D
d) B-C

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question
...