Evaluate the integral. \int \frac{x+3}{x-1}dx

Idilwsiw2 2021-11-22 Answered
Evaluate the integral.
\(\displaystyle\int{\frac{{{x}+{3}}}{{{x}-{1}}}}{\left.{d}{x}\right.}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

Lible1953
Answered 2021-11-23 Author has 1818 answers
Step 1
Given: \(\displaystyle{I}=\int{\frac{{{x}+{3}}}{{{x}-{1}}}}{\left.{d}{x}\right.}\)
For evaluating given integral, first we simplify given expression then integrate it
Step 2
So,
\(\displaystyle{I}=\int{\frac{{{x}+{3}}}{{{x}-{1}}}}{\left.{d}{x}\right.}\)
\(\displaystyle=\int{\frac{{{\left({x}-{1}+{4}\right)}}}{{{\left({x}-{1}\right)}}}}{\left.{d}{x}\right.}\)
\(\displaystyle=\int{\left({\frac{{{x}-{1}}}{{{x}-{1}}}}+{\frac{{{4}}}{{{x}-{1}}}}\right)}{\left.{d}{x}\right.}\)
\(\displaystyle=\int{\left({1}+{\frac{{{4}}}{{{x}-{1}}}}\right)}{\left.{d}{x}\right.}\)
\(\displaystyle=\int{\left.{d}{x}\right.}+{4}\int{\frac{{{\left.{d}{x}\right.}}}{{{x}-{1}}}}\)
\(\displaystyle{\left(\because\int{\left.{d}{x}\right.}={x}+{c},\int{\frac{{{\left.{d}{x}\right.}}}{{{x}-{a}}}}={\ln}{\left|{x}-{a}\right|}+{c}\right)}\)
\(\displaystyle={x}+{4}{\ln}{\left|{x}-{1}\right|}+{c}\)
Hence, given integral is equal to \(\displaystyle{\left({x}+{4}{\ln}{\left|{x}-{1}\right|}+{c}\right)}\).
Have a similar question?
Ask An Expert
0
 
Charles Clute
Answered 2021-11-24 Author has 505 answers
Step 1
Use Integration by Substitution.
Let u=x-1, du=dx, then x+3dx=u+1+3 du
Step 2
Using u and du above, rewrite \(\displaystyle\int{\frac{{{x}+{3}}}{{{x}-{1}}}}{\left.{d}{x}\right.}\).
\(\displaystyle\int{\left({u}+{1}+{3}\right)}\times{\frac{{{1}}}{{{u}}}}{d}{u}\)
Step 3
Use Sum Rule: \(\displaystyle\int{f{{\left({x}\right)}}}+{g{{\left({x}\right)}}}{\left.{d}{x}\right.}=\int{f{{\left({x}\right)}}}{\left.{d}{x}\right.}+\int{g{{\left({x}\right)}}}{\left.{d}{x}\right.}\).
\(\displaystyle\int{1}{d}{u}+\int{\frac{{{4}}}{{{u}}}}{d}{u}\)
Step 4
Use this rule: \(\displaystyle\int{a}{\left.{d}{x}\right.}={a}{x}+{C}\).
\(\displaystyle{u}+\int{\frac{{{4}}}{{{u}}}}{d}{u}\)
Step 5
Use Constant Factor Rule: \(\displaystyle\int{c}{f{{\left({x}\right)}}}{\left.{d}{x}\right.}={c}\int{f{{\left({x}\right)}}}{\left.{d}{x}\right.}\).
\(\displaystyle{u}+{4}\int{\frac{{{1}}}{{{u}}}}{d}{u}\)
Step 6
The derivative of \(\displaystyle{\ln{{x}}}\ {i}{s}\ {\frac{{{1}}}{{{x}}}}\).
\(\displaystyle{u}+{4}{\ln{{u}}}\)
Step 7
Substitute u=x−1 back into the original integral.
\(\displaystyle{x}-{1}+{4}{\ln{{\left({x}-{1}\right)}}}\)
Step 8
Add constant.
\(\displaystyle{x}-{1}+{4}{\ln{{\left({x}-{1}\right)}}}+{C}\)
Step 9
Merge numbers into the constant.
\(\displaystyle{x}+{4}{\ln{{\left({x}-{1}\right)}}}+{C}\)
0

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more
...