# Compute the indefinite integral of the following function. r(t)

Compute the indefinite integral of the following function.
$$\displaystyle{r}{\left({t}\right)}={14}^{{{t}}}{i}+{\frac{{{1}}}{{{3}+{8}{t}}}}{j}+{\ln{{19}}}{t}{k}$$
Select the correct choice below and fill in the answer boxes to complete your choice.
A) $$\displaystyle\int{r}{\left({t}\right)}{\left.{d}{t}\right.}={()}{i}+{()}{j}+{()}{k}$$
B) $$\displaystyle\int{r}{\left({t}\right)}{\left.{d}{t}\right.}={()}{i}+{()}{j}+{()}{k}+{C}$$

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself.

May Dunn
Step 1
Solution:
Consider the vector-valued function:
$$\displaystyle{r}{\left({t}\right)}={14}^{{{t}}}{i}+{\frac{{{1}}}{{{3}+{8}{t}}}}{j}+{\ln{{19}}}{t}{k}$$
Integrating with respect to t we have
$$\displaystyle\int{r}{\left({t}\right)}={\left[\int{\left({14}\right)}^{{{t}}}{\left.{d}{t}\right.}\right]}{i}+{\left[\int{\left({\frac{{{1}}}{{{3}+{8}{t}}}}\right)}{\left.{d}{t}\right.}\right]}+{\left[\int{\left({\ln{{19}}}{t}\right)}{\left.{d}{t}\right.}\right]}{k}$$
$$\displaystyle{\sin{{c}}}{e}\int{\left({14}\right)}^{{{t}}}{\left.{d}{t}\right.}={\frac{{{14}^{{{t}}}}}{{{\ln{{14}}}}}}$$
$$\displaystyle\int{\left({\frac{{{1}}}{{{3}+{8}{t}}}}\right)}{\left.{d}{t}\right.}={\frac{{{1}}}{{{8}}}}\int{\frac{{{1}}}{{{u}}}}{d}{u}{\left({a}{s}\ {p}{u}{t}\ {u}={3}+{8}{t}\right)}$$
$$\displaystyle\int{\left({\frac{{{1}}}{{{3}+{8}{t}}}}\right)}{\left.{d}{t}\right.}={\frac{{{1}}}{{{8}}}}{\ln}{\left|{u}\right|}={\frac{{{1}}}{{{8}}}}{\left|{3}+{8}{t}\right|}$$ and
$$\displaystyle\int{\left({\ln{{19}}}{t}\right)}{\left.{d}{t}\right.}={\left({t}{\left({\ln{{19}}}{t}\right)}-{t}\right)}$$
Putting these values in above we have
$$\displaystyle\int{r}{\left({t}\right)}={\left({\frac{{{14}^{{{t}}}}}{{{\ln{{14}}}}}}\right)}{i}+{\left({\frac{{{1}}}{{{8}}}}{\ln}{\left|{3}+{8}{t}\right|}\right)}{j}+{\left({t}{\left({\ln{{19}}}{t}\right)}-{t}\right)}{k}+{C}$$