Step 1

We have given

Radius or circle \(\displaystyle={10}\) inches

\(\displaystyle\Rightarrow{r}={10}\) inches

As area or circle, 1) \(\displaystyle{A}=\pi{r}^{{{2}}}\)

\(\displaystyle\Rightarrow{A}=\pi{\left({10}\right)}^{{{2}}}\ \in{c}{h}^{{{2}}}\)

\(\displaystyle\Rightarrow{A}=\pi{\left({10}\times{10}\right)}\ \in{c}{h}^{{{2}}}\)

\(\displaystyle\Rightarrow{A}={100}\pi\ \in{c}{h}^{{{2}}}\)

So area of circle \(\displaystyle={100}\pi\) square inches

We have given

Radius or circle \(\displaystyle={10}\) inches

\(\displaystyle\Rightarrow{r}={10}\) inches

As area or circle, 1) \(\displaystyle{A}=\pi{r}^{{{2}}}\)

\(\displaystyle\Rightarrow{A}=\pi{\left({10}\right)}^{{{2}}}\ \in{c}{h}^{{{2}}}\)

\(\displaystyle\Rightarrow{A}=\pi{\left({10}\times{10}\right)}\ \in{c}{h}^{{{2}}}\)

\(\displaystyle\Rightarrow{A}={100}\pi\ \in{c}{h}^{{{2}}}\)

So area of circle \(\displaystyle={100}\pi\) square inches